
 01 14

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance

Thesis/Dissertation Agreement.
Publication Delay, and Certification/Disclaimer (Graduate School Form 32)
adheres to the provisions of 

Department 

Christian Eduardo Silva Salazar

Development, Numerical Demonstration, and Experimental Verification of a Method for Model
Updating of Boundary Conditions.

Master of Science in Mechanical Engineering

Shirley J. Dyke

Arun Prakash

Jeffrey F. Rhoads

Shirley J. Dyke

David Anderson 07/29/2014





DEVELOPMENT, NUMERICAL DEMONSTRATION AND EXPERIMENTAL

VERIFICATION OF A METHOD FOR MODEL UPDATING OF BOUNDARY

CONDITIONS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Christian E. Silva

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Mechanical Engineering

August 2014

Purdue University

West Lafayette, Indiana



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  1573753

Published by ProQuest LLC (2015).  Copyright in the Dissertation held by the Author.

UMI Number:  1573753



ii

To God.

To Ximena, Tomás, Ana and Maŕıa.
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ABSTRACT

Silva, Christian E. M.S.M.E, Purdue University, August 2014. Development, Numer-
ical Demonstration and Experimental Verification of a Method for Model Updating
of Boundary Conditions. Major Professor: Shirley J. Dyke, School of Mechanical
Engineering.

The study of vibrations in beams has been largely addressed by authors and

researchers. However, relatively few researchers have considered the case of unknown

boundary conditions, as usually it is reasonable to assume the classical cases such

as simply supported, clamped or free. Indeed, there are a wide variety of boundary-

condition configurations, each one representing a whole different problem with its

own modal characteristics.

A method for updating experimental beam models to specifically address the is-

sue of unknown boundary conditions is proposed. This methodology takes advantage

of vector comparison techniques such as the modal assurance criterion and the dot

product to determine the degree of linear relationship between two mode shapes sys-

tematically and iteratively until an acceptable parametric match is found. This thesis

includes the phases of development, numerical demonstration and experimental veri-

fication. In the section devoted to development, a detailed explanation of the method

is given; the numerical demonstration section is intended to demonstrate the capabil-

ities of the method using mathematical models only; and finally, in the experimental

verification section, a case study example is developed using real experiment data.

At the end of this thesis, a generalized procedure is described so the method can be

applied to beam-behaving structures and ultimately any engineering model in which

boundary conditions have an important role.
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1. INTRODUCTION

A hundred years ago, medicine relied mostly on the physical build of an individual’s

body and had almost no influence on one’s life expectancy. However, nowadays

medicine is not only a means of monitoring a person’s health, but of extending a life

through appropriate corrective procedures. Similarly, structures are viewed now in a

different light than in the past. The life of structures can be not only monitored but

also extended, if adequate monitoring techniques are used to determine a structure’s

condition. “The process of implementing a damage detection and characterization

strategy for engineering structures is referred to as Structural Health Monitoring

(SHM)” [1]. SHM utilizes techniques and results obtained from two closely related

fields that work side-by-side: modal analysis and finite element model updating.

“Modal analysis is the field of measuring and analyzing the dynamic response of

structures when excited” [2]; and ”finite element model updating is the process of

ensuring that finite element analysis results in models that better reflect the measured

data than the initial models” [3].

Lately, the process of building a structure, whether it is static (a building) or

dynamic (a machine part), has shifted from being a one-time action that ended at

the service start-date of the structure and relied mainly in the durability of the

selected materials, to a more interactive process in which the initial design is one

of many stages in the structure’s service lifetime. Indeed, nowadays a great deal of

information from the structure can be obtained which is further used for improving

or correcting its behavior.

To properly predict the behavior of a structure, a suitable model must be se-

lected. This step requires experience and some understanding of the structure’s be-

havior. Even though many models have already been developed by engineers and

researchers, no model can be picked off-the-shelf for a determined problem. Every
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structure, no matter how similar it is to a previous one, has a different behavior due

to uncertainties that are present from many sources: material non-homogeneities,

environmental surroundings, usage, assembly discrepancies and of course, boundary

conditions. Therefore, the selected model must be corrected so it can properly predict

the system’s behavior. This process can be a dynamic one, that is to say that the

parameters of the model can be updated many times during a structure’s lifespan.

But to determine how much a model has to be modified or which parameter should

be updated, after having some knowledge of the behavior of the structure, some sort

of identification process has to be performed. Figure 1.1 shows a schematic diagram

of the described processes.

Figure 1.1. Model updating and parallel techniques.

Once a model has been selected, and the structural behavior has led to a model

updating, such a structure can begin its service life and its response can start to

be monitored so that its behavior is continuously compared to the predicted by the

updated model. This process is called structural health monitoring, and it is among

the most important subjects in civil, mechanical and aerospace engineering and has
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received increasing attention from researchers and engineers in recent years. There

are two different types of methodologies for health monitoring; namely, localized

and global techniques [4]. Localized techniques are based on specific location analy-

ses, such as observations and non-destructive tests performed in key locations of the

structure; whereas global techniques analyze the structure as a whole, studying, for

instance, its frequencies or mode shapes for determining its condition.

Modern sensor and communication technologies, as well as computational capa-

bilities, have made it possible for an engineer to know the conditions of a structure

in real-time and, therefore, since every structure is changing over time, to know with

high accuracy any deviations from its intended mechanical and dynamic properties

at the very moment of appearance of such deviations. The retrieved information can

be used to schedule adequate and cost-effective maintenance works, to plan and exe-

cute any corrective modifications to the physical structure, and even to estimate the

remaining life with a fair amount of accuracy.

Structural dynamics or modal analysis is the traditional method for obtaining

dynamic properties of a given system or structure, and constitutes an important step

for model updating. Several modal identification techniques have been developed,

some of which will be used in the present thesis to implement the proposed method.

1.1 Overview

This project addresses the problem of a structure whose model has been partially

defined. Preliminarily, a simply supported beam model has been selected, but there

exist significant deviations between the model’s modal information the experimental

results. The idea of changing a parameter of the structure for model updating though

promising, does not provide a realistic technique because of the large deviations noted

above. Therefore, an alternative technique for determining a better model has to be

developed beforehand.
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The goal of this project is to investigate a way to provide a model updating tech-

nique that takes into account the problem of boundary conditions instead of structural

parameters, and how a change in these boundary conditions will affect the behavior

of the structure. The steps to achieve the proposed goal include the development

of an adequate methodology for comparing modal parameters in a vectorial fashion;

the verification of such a methodology with information from mathematical models

only to obtain perfect matches; and, after confirming the strength of the method, the

extension of the procedure to experimental data to try to obtain a mathematically

close relationship between the experimental and analytical models.

The success of the present project is based in many aspects, such as the avail-

ability of analytical models already developed which only have to be compared to

that of the experiment, and the vectorial form of modal parameters, either in time

or frequency domain, which can be straightforwardly compared using an appropriate

computer algorithm until the best match is found. Some of the assumptions made

for this project are the models of the structure. A group of Euler-Bernoulli models

of bending vibrations in beams are considered for the present thesis. Moreover, there

are around fifty analytical cases that can be included in the comparison algorithm

which constitutes a fair large analytical ‘model space’ to choose form. If each one

of these models is tested with different parameters such as rotational inertias, linear

or rotational spring stiffnesses, lumped masses, or combinations of these, the “model

space” can reach several hundreds of possibilities. As any proposed technique, the

methodology of this thesis is not exempt from risks and obstacles, such as the travel

from the continuous domain to the discrete domain in the experimental setup. A

beam is to be tested by the use of a finite number of sensors which will not repli-

cate the continuous behavior exactly, leaving a space for uncertainties and unknown

parameters. Nevertheless, the proposed method is not a model validation technique,

but more of a model updating technique which instead of modifying parameters of

a set model, shifts to a different model (beam model + boundary conditions) within
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a reasonable error margin. For this study, four beam models have been chosen: two

classical and two non-classical, which are listed below:

• Simply-supported: both ends are pinned with translation constraints in x, y and

z.

• Clamped-clamped: both ends are fixed with translation and rotation constraints

in x, y and z.

• Partial elastic supports: ends are pinned and have rotational springs of constant

kθi on both ends (i = 1, 2).

• Mixed inertial supports: pinned ends with inertial rotational masses of constant

Iθi on both ends (i = 1, 2).

The thesis is divided in three sections: Development of the Method; Numerical

Validation and Experimental Verification

The first section includes Chapters 2, 3 and 4. Chapter 2 is a short review of

related literature; Chapter 3 includes some of the theoretical background on which the

thesis is based; and the basics of the method are explained in Chapter 4. The second

section is composed of Chapters 5 and 6. In Chapter 5, three mathematical models

are developed using both analytical and finite element methods for understanding

the mechanics of boundary condition changes in beams. To ensure the functionality

of the method, Chapter 6 shows how the method works with data collected through

simulations from analytical models. The third section includes Chapters 7 and 8. In

Chapter 7 a short description of the structure designed for this study is developed,

whereas Chapter 8 deals with the application of the method with an experimental

example. Final chapters devoted to conclusions and future directions of research are

included outside of the mentioned sections.



6

1.2 Purpose of Project

The specific purpose of this project is to develop a method for model updating

which iteratively compares the response of a structure with the responses of a group of

selected structures whose models have been preselected. The aim of such comparison

is to detect the highest correlation between the case study model and any of the

selected models.

The proposed method is a very interesting approach because it can be applied

using a “solution space” or “model space”, which can be of any finite size. All of

the elements of this “model space” are compared to the specimen model (case study)

one by one to construct a correlation vector or matrix which, if further analyzed,

determines which model is more likely to be generating such a response. At this

point, it is important to make a clarification: although the proposed method tries to

correlate so-called ‘models’, this is indeed a model updating methodology a bit away

from traditional model updating techniques inasmuch as the parameters that are tried

to be correlated are boundary condition parameters, instead of a structural physical

parameters. Consider for example a model with the mass, stiffness and damping

matrices, M,C,K respectively are modified accordingly for model updating using a

least squares approach so that the model matches some experimental behavior; the

proposed technique will not change any beam structural parameters directly (such as

M,C or K), but some boundary-condition parameters (such as a spring constants or

rotational mass inertias or lumped masses at fixed points) to obtain the same desired

behavior. This constitutes a novel idea since boundary conditions are more likely to

be the reasons for a model deviation instead of intrinsic material structural matrices.

For the case of this thesis, only four models were studied and used as reference, two

of which had variable parameters to construct a fair large model space for comparison,

but in a real life case, many more can be used. Consider for example the case

of a beam with a concentrated mass at midspan and a distributed load along its

length: The first most intuitive model that can be considered is a simply-supported
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beam with a lumped mass at midspan, but if after performing modal testing on this

hypothetical structure an engineer realizes that its parameters don’t match those of

his first selected model, he has to repeat the modeling process over and over again until

a good approximation appears, resulting in a very tedious time consuming process.

On the other hand, by using the proposed method, it is only matter of running a set of

correlation analysis modifying the combinations lumped mass/concentrated load until

a high enough index is obtained which is an indicative of the closest mathematical

match.



PART I: DEVELOPMENT
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2. LITERATURE REVIEW

2.1 The Vibration of Euler-Bernoulli Beams with Different Boundary

Conditions

The vibration of beams with classical boundary conditions is a topic that has

been widely covered by various authors, both in books and scientific articles. How-

ever, when non-classical boundary conditions are present, the available bibliography

becomes rather limited. Analytical solutions of the beam problem with simple bound-

ary conditions such as pinned, fixed and sliding configurations were addressed in books

by Meirovitch [5], Karnovsky [6], Gorman [7] and Blevins [8], just to cite a few.

Although general boundary conditions such as combinations of pinned, fixed and

sliding ends appear to be simple cases, these are nothing but special cases of more

complex analyses involving elastic boundary conditions in the form of springs, both

linear and rotational, located either at the ends of a beam, or at intermediate points.

For instance, a simply-supported beam is a special case of a beam resting on linear

springs of infinite stiffness which provide the translational constraint in the x, y

and z directions, and rotational springs both of zero stiffness which provide the free

rotation around the y axis and rotational springs of infinite angular stiffness which

provide the rotational constraints around the x and y directions. Several studies

have been published on these types of constrained beams. Hibbeler [9] considered the

vibration of a beam limited at both ends with rotational springs of different stiffnesses,

although his results were later corrected by himself [10], and documented by several

other authors like Goel [11] and Rao et al. [12]; Chun [13] derived the eigenvalues

and eigenvectors of a vibrating beam with one end constrained by rotational and

translational springs, and the other end free, whereas Lv et al. [14] and Kang &



9

Kim [15] studied general boundary condition cases. For the case of a mass-beam

system, i.e., a beam with a mass at a certain distance from the origin, Goel [11]

developed both analytical equations and eigenfrequency tables for different spring

constant rates. Many other authors developed related works involving mass-beam

systems; some examples are the publications by Register [16], Yen [17], Goel [11] and

Laura et al. [18]. Maurizi, along with other researchers, developed an extensive work

on vibrations of beams publishing several articles. Maurizi studied a case where a

beam is constrained with a rotational spring on one end, and a translational spring

on the other; i.e., mixed boundary conditions on the same beam [19]; other case was a

beam with elastic constraints on both ends subjected to free or forced vibrations [20];

and he even did a review of many boundary condition cases published by previous

authors [21]. All these cases are more realistic scenarios for boundary conditions to

which structures are subjected on a daily basis. One good example of a problem where

boundary conditions are not ideal is an emergency deployable bridge structure which

is ‘placed’ over the connecting points without any soil or ramp preparation. In this

case, no information about boundary conditions is available despite the fact that these

boundary conditions are precisely the parameters which give the system its natural

characteristics. Moreover, these boundary conditions will most likely change on a

regular basis due to usage, weather conditions and material degradation. Another

example is a beam connected to rigid supports by pins (simply-supported) in which

the pin-hole assembly deviates from its design leading into unknown forcing moments.

As the reader can imagine, boundary conditions are a very delicate problem that has

to be addressed with the maximum of accuracy in a real-life structure.

The previous literature review dealt with general analytical and numerical meth-

ods for solving the governing equations along with the boundary condition equations.

However, there is also a great deal of research regarding alternative methods for solv-

ing the problem of vibrations of beams with both classical and elastic constrained

ends. One of these methods is Fourier series. A general methodology for structural
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vibration problems using Fourier series was published by Greif and Mittendorf in

1976 [22]. Li [23] solved the problem of vibration of a generally supported beam by

combining Fourier series and an auxiliary polynomial function. Wang [24] solved this

problem in a similar way, but also using Stoke’s transformations for the derivatives

in the boundary conditions; and more recently, Yayli et al. [25] and [26] extended

this approach for elastically-constrained ends and elastic foundation, which are not

covered in the present thesis.

Other alternate methodologies, for solving the vibration problem of an Euler-Bernoulli

beam subjected to various boundary condition combinations were used by Lai et

al., [27] and Mao [28]. They used an Adomian decomposition to transform the gov-

erning differential equation of a beam into a recursive algebraic equation which con-

verts the boundary conditions into simple algebraic equations suitable for symbolic

computation. Although the mathematical effort to derive the frequency equations is

not very straightforward, once these have been obtained, this method becomes very

simple when a different boundary condition case is to be analyzed, making the overall

process easier and less time consuming.

So far, the cited bibliography referred only to continuous beams. Many publica-

tions are available for the problem of vibrations of discontinuous beams. Failla and

Santini [29] proposed a solution method for beams with internal translational and

rotational springs whose work was based primarily in Billelo and Bergman’s study of

crack modeling using internal rotational and translational springs [30]. Other good

examples of this approximation for cracks on beams with springs are the studies by

Raffo and Carrizo which introduced the solution of an inverse problem for beams and

frames under presence of cracks [31]; Wang & Qiao, who proposed a Laplace trans-

form approach for the solution of the governing equations [32]; and Ratazzi et al.,

who extended their work for frames with internal hinges [33]. A variation of discon-

tinuous beams is the case of multispan beams. Several authors covered special cases
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of multi-span beams with intermediate supports. Again, Karnovsky, [6], Gorman [7]

and Blevins [8] devoted separate chapters in their books for single, double, triple,

quadruple and multi-span beams with combined boundary conditions and even with

inter-span spring connections.

Some cases of cantilever beams are covered but as particular cases of more general

ones. A rather large amount of publications have been made regarding to cantilever

beams as well. Also, this literature deals with problems in which the authors use

a combination of analytical and numerical methods for solving the equations. For

example, in most cases, the governing partial differential equation of the beam is

solved using the principle of separation of variables. However, once the equation of

frequency is obtained, this is usually a transcendental equation whose solution cannot

be found analytically and a numerical method like bisection or Newton-Raphson has

to be used for root-finding. Moreover, approximate methods have been used also to

solve the complete problem, in the form of finite element analysis. Meirovitch [5]

devotes a chapter of his book for describing the finite element method as a means

of modal analysis using the Rayleigh-Ritz method and both linear and higher degree

interpolation functions. Other good sources for theoretical background and practical

implementation of finite element analysis in vibration problems are the books by

Courant [34], Huebner [35] and Zienkiewicz & Taylor [36].

2.2 Modal Analysis

Modal analysis is a foundational section of system identification. “It is a process of

analysis of the vibratory behavior of structures and systems by means of theoretical

or technical techniques. The ultimate goal is the determination of a structure or

system modal parameters for further constructing a mathematical model of such a

system,” [37] with the objective of “determining, improving and optimizing dynamic

characteristics of engineering systems and structures” [38]. It has spread so widely



12

that numerous methods for modal identification have been developed and published

by authors throughout the last four decades [38] [39].

Brown & Allemang [40] considered that modal analysis is founded in two main

historical scientific breakthroughs: the decomposition of solar spectrum in its color

components made by Newton, and the subsequent decomposition of arbitrary func-

tions into its simple harmonic components made by Fourier. However, it wasn’t until

the mid twentieth century where modal analysis started to gain academic and in-

dustrial interest due to the necessity of understanding the vibrations on airplanes,

machine tools and vehicles. The introduction of the fast Fourier transform method

by Cooly & Tukey [44] could be considered a turning point of the fast development

and increasing popularity of modal analysis as a previous step for various applica-

tions, such as damage detection, structural health monitoring, structural control and

structural design. It is not the intention of the present thesis to do a historical review

of modal analysis, but to cite just a few relevant findings in the area. As a conse-

quence of the popularity of the field, many books have been published like the ones

by Mendez Maia [41], Ewins [42] and Fu & He [43].

Figure 2.1. Frequency-domain methods, (from [50]).
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There is a wide list of modal analysis techniques developed recently and a brief

description of these will be made herein. Nevertheless, it will be helpful to provide the

big picture of modal identification methods. The experimental direction frequently

used by researchers is to collect acceleration, velocity or position data from a sensor

(output), when an excitation (input) has been imposed to the structure to obtain, af-

ter proper analysis, an input/output relationship called transfer function (TF) which

contains the modal characteristics of the structure (frequencies, mode shapes and

damping ratios) or the mechanical characteristics of the system (mass and stiffness).

Excitations can be as varied as ambient (traffic, wind, plant noise), impact (instru-

mented hammers or exciters), known functions (harmonic, step, earthquake history),

etc. Modal analysis can be performed both in the time-domain and in the frequency-

domain. These two main divisions can also be sub-divided into direct and indirect

methods; Figures 2.1 and 2.2 depict an overall idea of most of the available methods.

Frequency domain methods use the frequency response function (FRF) information

and time-domain methods use finite element analysis or the inverse FRF which is

nothing but the inverse fast Fourier (IFFT) transform of the FRF.

Figure 2.2. Time-domain methods, (from [50]).
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2.2.1 Frequency-Domain Methods for Modal Analysis

Frequency-domain modal analysis uses a mathematical model that represents the

frequency response function (FRF) data from measurements. An analytical expres-

sion of the FRF or commonly known as transfer function, as a partial fraction expan-

sion can be given by:

H(ω) =
N∑
r=1

Ak

iω − βk
+

A∗k
iω − β∗k

(2.1)

where Ak is the modal constant matrix with components rAij related to components

φik, φjk of eigenvector k through the formula:

rAija = qkφikφjk (2.2)

and qk is a modal participation factor. Index k indicates the k-th mode and the poles

in the denominator can be obtained by solving the characteristic equation

βk, β
∗
k = −ωkζk ± i

(
ωk

√
1− ζ2k

)
. (2.3)

This implies that most frequency-domain methods take advantage of the infor-

mation given by a transfer function to derive the modal characteristics of a linear

time-invariant system. Combinations of inputs, outputs and locations lead to a set

of FRF’s. The most commonly used frequency-domain techniques for modal identifi-

cation are peak-picking, circle fit, inverse FRF, least squares and Dobson’s method.

The simplest frequency-domain method for identifying modal parameters is the

peak picking method, whose idea is to manually pick the peaks of the FRF which

correspond to the resonance frequencies. The damping ratios can be estimated by

evaluating the sharpness of such points; and the mode shapes, from the relation

between peak amplitudes in the structure [45]. This method was proposed by Bishop

& Gladwell [46]. Unfortunately, this approach works fine for well separated and
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clear modes whereas for complex structures that mix lateral with torsional modes

may not be very efficient. Nevertheless, it is very popular due to its simplicity and

implementation time. The present work utilizes also this method for mode verification

and elimination of torsional modes by observations made in the imaginary part of the

transfer function. This method is shown in Fig. 2.3.
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Figure 2.3. Modes manually picked from a frequency response function.

Another important method developed by Kennedy [47] is the circle fit, which uses

the relationship between real and imaginary part of a transfer function around each

natural frequency to identify modal parameters of the system. This method’s basic

idea is that the receptance FRF α(ω) traces a perfect circle on the Nyquist plane,

and where h is a measure of structural damping.

[Re(α)]2 +

[
Im(α) +

1

2h

]2
=

(
1

2h

)2

. (2.4)

A very interesting approach for modal estimation is derived from the properties

of the inverse of the frequency response function (IFRF) which are nothing but the

Bode plots presented by Dobson [48]. By plotting the real and imaginary parts of

the IFRF versus frequency and after curve-fitting them, the modal parameters can
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be estimated by simple inspection; indeed, the intercept point of the real part with

the real axis provides the natural frequency; either the slope or the ratio of the two

slopes provide both the phase and the magnitude of the modal constant; and any of

the plots provide an estimate of the damping ratio. Dobson also developed a second

method, this time called the “Dobson method” which takes advantage of the complex

modes and corrects for neighboring ones [49]. The aforementioned methods are just to

cite the few most important covering the frequency-domain direct methods. Mendez

Maia in his PhD dissertation [50] presents a very thorough summary of the avail-

able indirect methods which are reproduced here for the reader’s convenience: the

Gaukroger-Skingle-Heron (GSH) [51], Ewins Gleeson [52], Frequency-Domain Prony

(FDPM) [53], the Complex Exponential FD method [54], the Eigensystem Realization

Algorithm in the Frequency Domain (ERA-FD) [55], the Rational Fraction Polyno-

mial (RFP), the global RFP mentioned in [56], the Global Method [57] and the

Polyreference Frequency Domain Method (PRFD) [58].

Among the direct-methods is a smaller number of techniques, both for single-input

single-output (SISO) and multiple-input multiple output (MIMO) systems. These

include the Simultaneous Frequency Domain method (SFD) introduced by Coppolino

[59]; the Identification of Structural Parameters method (ISSPA) by Link [60]; the

Spectral method by Klosterman [61]; and the Multi-Matrix method, developed by

Leuridan [69].

2.2.2 Time-Domain Methods for Modal analysis

So far, a brief description and references of many of the available frequency-domain

modal analysis methods has been provided. On the other hand, several time-domain

methods are also available, some of which have gained great popularity due to cur-

rent computational availability. These methods rely on time response data in the

form of acceleration, velocity or displacement history. It should be noted that within
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this category, many methods use the information from the inverse fourier transform

(IFFT) to take advantage of the averaging of most of the frequency-domain tech-

niques and thus reducing noise implications. Within this category the most popular

direct methods are the Complex Exponential (CE) for local identification, and the

Least Squares Complex Exponential (LSCE), which is an extension of the CE method

for global identification, both proposed by Spitznogle and Quazi [64]. Vold and Rock-

lin [65] extended the previous method which is for SISO systems to a more versatile

MIMO version called the Polyreference Complex Exponential Method (PRCE), whose

principal improvement was the fact that it could reveal hidden modes due to input

locations near nodal points. Perhaps one of the preferred time-domain methods up-

to-date is the Ibrahim Time Domain Method [66], not only for its integration with the

state-space representation of the equations of motion and consequently with Control

Theory, but also because it was a foundation for the development of further matrix

methods for modal identification such as the ERA. Among the direct methods one can

find a couple of popular ones; namely the Auto Regressive Moving-Average method

(ARMA), based on Gersch’s [67] work; and the Direct System Parameter Identifi-

cation method (DSPI) developed by Leuridan [69]; both of which include statistical

analysis as an assurance criteria.

2.3 Modal Correlation

Modal testing has provided researchers the means of obtaining modal parameters

from experimental information collected from a wide range of setups. However, all

the collected information needs to be compared with the chosen mathematical model

to define, with a fair amount of certainty, the desired behavior of the system. This

comparison between observed results and expected ones is called correlation; in this

particular case, modal correlation is the link that connects analytical and experi-

mental structural dynamics and mechanical vibrations. The most popular modal

parameter correlation is called modal assurance criteria (MAC), which is basically a
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squared linear regression coefficient based on the Cauchy-Schwartz inequality and was

first proposed by Allemang in 1980 [71]. As Allemang wrote: “The historical develop-

ment of the modal assurance criteria originated from the need for a quality assurance

indicator for experimental modal vectors that are estimated from measured response

functions” [71], and whose intended purpose was orthogonality checks. Since then,

many modal assurance methodologies have been developed depending on the spe-

cific correlation analysis that needed to be performed. These include the coordinate

modal assurance criterion (COMAC), frequency response assurance criterion (FRAC),

frequency-scaled modal assurance criterion (FMAC), partial modal assurance crite-

rion (PMAC), scaled modal assurance criterion (SMAC) and reciprocal modal vector

assurance criterion (RVMAC.) Some of these methods will be briefly described herein.

Validation of experimentally-obtained modal parameters such as mode shape vectors

or natural frequencies can be performed both in vector or scalar fashion; the former,

through calculating the complex modal scale factor; and the latter, through a scalar

measure of vector consistency. The vectorial correlation technique is called modal

scale factor (MSF), whereas the scalar is called modal assurance criterion. These two

correlation approaches are defined in Eqns. (2.5) and (2.6), for two arbitrary vectors

ψa and ψb.

MSF =
ψaψb
ψbψb

. (2.5)

MAC =
|ψaψb|2

(ψaψTa )(ψbψTb )
. (2.6)

The COMAC utilizes both the mode shape vector and the natural frequency, called

together mode pairs, to verify linear relationship between modes either experimental

or analytical (similar to Chapter 6). However, its direction is more towards identify-

ing which DOF of the measurements contribute negatively to a low value of MAC. It
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was developed by Lieven [72] in 1988.

Various authors extended this methodology to the frequency-domain. Heylen &

Lammens proposed a similar technique to compare, not modal vectors but frequency

response function vectors using also a squared linear regression coefficient [75]; such

method took the name of frequency response assurance criterion (FRAC), and later

Fotsch & Ewins introduced a frequency scaling upgrade to the MAC method “such

that the mode shape correlation, the degree of spatial aliasing and the frequency

comparison can be displayed in a single plot” [74]. In their proposed methodology,

graphical representations of the mode shape correlations with circles of diameters

equal to the MAC values are compared in a chart such that related modes would

appear in the form of a 45◦ line with big dots and non-correlated modes will appear

as smaller dots spread throughout the plot. Specialized extensions of the MAC are

used commonly when only a desired part of the information is needed. For such cases,

Heylen & Janter proposed the partial modal assurance criterion (PMAC), and the

spatial modal assurance criterion (SMAC) [75]. The former is used to correlate parts

of modal vectors, and it is specially useful when computational efficiency needs to be

achieved by disregarding non-relevant information; the latter compares vector spaces;

that is to say that the SMAC is the least squares solution of a vector transformation

equation as follows:

ψe = ψaQ (2.7)

where Q is the transformation matrix.

SMSF = (ψTa ψ
T
b )−1(ψTa ψ

T
b ). (2.8)

Equation (2.8) represents the least squares solution of Eq. (2.7), minimizing

‖ψb − ψaQ‖.
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When rotational degrees of freedom are used, a special scaled MAC was proposed

by Brechlin et al., where the weighting matrix is such that it balances the scaling of

translational and rotational DOF’s in the modal vectors [76].

There is also a great deal of research on damage detection approaches using the

Cauchy-Schwartz inequality. Messina proposed an assurance criterion-based method

for detecting damage locations called the Damage Location Assurance Criteria (DLAC),

and later upgraded his method to quantify such damage calling it the Multiple Dam-

age Location Assurance Criteria (MDLAC) [77] [78]. Koh & Dyke extended this work

by adding information from the sensitivity matrix to the formulation and used ge-

netic algorithms in an effort to obtain a computationally-efficient algorithm for vector

comparisons [79]. While both Messina’s and Koh’s work used natural frequency shift

vectors as comparison criteria, Pandey & Biswas used mode shape information to

determine location and amount of damage [80].

It is clear that the method proposed herein has a close relation to those cited

above but with a different scope than to determine damage in structures. However,

the conception of the proposed method in this thesis is quite similar inasmuch as both

approaches propose an iterative comparison of vectors.

In the present thesis, the use of a model-correlation-based method will be used

only for comparison of experimental and analytical mode shape vectors; therefore, to

construct a mapping matrix between analytical and experimental mode shapes. As

many of the MAC formulations use Hermitian matrices instead of transposed ones,

this proposed formulation will deal only with real mode shape vectors. Should a case

where complex modal vectors arise, the formulation must be corrected accordingly.
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3. THEORETICAL BACKGROUND

3.1 Introduction

The identification method used for the completion of this thesis is peak-picking on

FFTs. Although there is a vast variety of techniques available, such a technique was

selected for its simplicity and ease of application. Also, because the identification

step is not the central topic of the present work. In this section, the theoretical

background of these two methods is explained in detail.

3.2 The Fourier Transform

The Fourier Transform is a basic mathematical resource in signal processing. Its

essential purpose is to decompose any signal or function into sinusoidal components

in an interval from −∞ to +∞. Since real-life signals are finite, a couple of good

artifices are used to transform finite signals into infinite ones: the first is to transform

the finite signal into periodic by adding itself to the right and left of the original

signal; and the second, is to add zeros to the left and right of the original signal.

Consider an arbitrary function x(t), the Fourier transform (FT) is defined as:

F{x(t)} = X(w) =

+∞∫
−∞

x(t)e−iωntdt. (3.1)

Note that the FT is a function of the frequency ω. Subsequently, the Inverse

Fourier Transform (IFT) is defined as:

F−1{X(ω)} = x(t) =
1

2π

+∞∫
−∞

X(ω)eiωntdw. (3.2)

The previous formulation is theoretical and intended for a continuous signal which

is not the case in real life. For discrete signals that occur through sampling, instead
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of a continuous time t, a time step tk = k∆t is used. The equivalent FT of such

discrete system is:

Xn =
N−1∑
k0

xke
−iωt (3.3)

where ωt = 2π
N
nk. The sampling frequency is defined as:

fs =
1

∆t
. (3.4)

Only half of the signal representation by the FT is useful due to the Nyquist-

Shannon theorem which states that the maximum frequency represented by a discrete

signal is equal to half the sampling frequency with which it was generated, i.e.,

fs ≥ 2fc (3.5)

where fs is the sampling frequency, per unit of time (Hz), and fc is the highest

frequency contained in the signal. The inverse Discrete Fourier Transform (IDFT) is

defined as:

xk =
1

N

N−1∑
n=0

Xne
i2π k

N
n. (3.6)

For this thesis, the MATLAB function fft.m and ifft.m are used which are based

on the Fast Fourer Transform, a method that breaks the DFT into smaller size DFT

couples for a faster calculation.

3.3 Frequency Response Function

Consider the single degree of freedom mass-spring-dashpot system depicted in Fig.

(3.1), whose equation of motion is:

mẍ+ cẋ+ kx = f(t). (3.7)

The Laplace transform of such a system is:

ms2X(s) + csX(s) + kX(s) = F (s). (3.8)
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Figure 3.1. Single DOF system.

Isolating X(s), yields:

X(s) = H(s)F (s) =
1

ms2 + cs+ k
F (s) (3.9)

where m is the mass, c is the damping coefficient, and k is the spring stiffness. The

expression of H(s) in Eq. (3.9) is the frequency response function (FRF) or transfer

function (TF) of the system. Assuming s = iω, one has:

H(iω) =
1

mω2 + ciω + k
. (3.10)

From this expression, one could obtain the original function very straightforwardly

by applying the inverse Laplace transform.

x(t) = L−1

{
1

mω2 + ciω + k
F (s)

}
. (3.11)

From the Laplace transform tables is known that for a second order system:

L1

{
1

(s+ α)(s+ β)

}
=

1

β − α
[e−αt − e−βt] (3.12)

then,

α =
c− i
√

4mk − c2
2m

β =
c+ i
√

4mk − c2
2m

.

(3.13)
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Assuming an under-damped system and an impulse input [f(t) = δ(t) → F (s) =

1],

x(t) =
1

m(βα)
[e−αt − e−βt]. (3.14)

Finally, defining k = mω2
n, c = 2mωnζ, and ωd = ωn

√
1− ζ2, the original function

x(t) is:

x(t) =
1

mωd
e−ζωnt[sin(ωnt)]. (3.15)

The FRF describes the response of the system to arbitrary inputs.

3.4 The Peak Amplitude Method

Once the FRF of a system has been determined, and its frequency peaks are vi-

sually available, a straightforward method of modal identification is used: the peak

amplitude method which takes advantage of the property of frequency domain func-

tions to provide a single spike for each frequency content (in ideal cases). After a peak

has been selected, and with the aid of the half-power method, the modal parameters

can be estimated according with the following procedure:

1. The damping ratios can be estimated by evaluating the steepness of each peak,

the steeper the peak, the lighter the damping ratio.

2. The natural frequency of each peak is determined by inspection of the frequency

axis of the FRF plot.

3. The mode shapes can be estimated by the relative amplitudes of peaks at differ-

ent locations of the structure (each sensor determines one location). Therefore,

the greater the resolution, the better the mode shape estimation.

Figure (3.2) shows the half-power technique for modal parameter estimation [84],

where Q represents the amplitude of the peak at the resonance frequency, points R1

and R2 are the half-power points used to define the bandwidth of the system.

Mode shapes are going to be estimated using the complex feature of the FRF.

As a complex function, the imaginary part of such function gives useful information
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Figure 3.2. The half-power method.

about the phase and relative magnitude of the peaks in each sensor location of the

structure, providing important insights about the mode of vibration at the frequencies

of interest. Consider the FRF matrix row shown in Fig. 3.3 which corresponds to

a cantilever beam with three accelerometers. The relative amplitude of each sensor

along with its phase (above or below the horizontal axis) determine the mode shape of

the first degree of freedom (corresponding to the first peak occurrence) drawn in blue.

If a similar procedure is done for the second, third, and so forth set of peaks, a set of

mode shape vectors is obtained. It must be noted that appropriate resolution has to

be selected to determine as clear and accurate as possible mode shapes and to avoid

aliasing. An alternative technique to the aforementioned is to display the imaginary

part of all the transfer functions generated by each accelerometer in parallel fashion,
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known as a waterfall plot. This representation allows the analyst a much clearer view

of the big picture for each mode.

Figure 3.3. Estimation of the first three mode shapes of a cantilever
beam with three sensor locations.
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4. A CORRELATION METHOD

The proposed correlation technique is explained in this chapter. As stated above,

the related mathematical principle used for this development is the Cauchy-Schwartz

inequality, which states that for all vectors x and y of an inner-product space it is

true that:

|〈x, y〉|2 ≤ 〈x, y〉 · 〈y, y〉. (4.1)

Therefore, the relationship between the left side and the right side of the inequality

is always less than or equal to unity.

|〈x, y〉|2

〈x, y〉 · 〈y, y〉
≤ 1 (4.2)

which can be used as a suitable correlation index between vectors x and y.

4.1 Correlation based on the Modal Assurance Criterion

The correlation method proposed herein is the application of such inequality which

is a squared linear regression correlation coefficient used originally for orthogonality

checks. This coefficient is very sensitive to large differences between the comparing

vectors (squared error minimization) and consequently, not very sensitive to small

changes. This indicator provides a means for comparing vectors originated in differ-

ent sources: e.g., a FEM-originated modal vector versus an experimentally-originated

one; or any other source. Therefore, no analytical model is needed for this method-

ology to work.
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The modal assurance criterion is defined as the relationship between the degree

of linearity between two vectors, in this case two modal vectors: one reference and

one experimentally-obtained. The equation for this relationship is:

MAC =
|〈ψaψe〉 |2

〈ψaψTa 〉〈ψeψTe 〉
(4.3)

where ψa and ψe are the vectors which relation is to be studied, and the T superscript

refers to ‘transposed’. The modal assurance criterion is a scalar value from zero to

one. Zero represents no correlation whatsoever and a MAC value of unity represents

a consistent correspondence. The modal assurance criterion is an indicator of con-

sistency only, that is to say that it will indicate whether two vectors are similar or

not; but it will not indicate if a given vector is correct or valid. Therefore, the use of

an analytical or finite element generated reference vector is always recommended to

provide a valid analysis.

The comparison procedure has two sides: on one side, the first n mode shapes

along with the first n− 1 stacked mode shapes, producing a group of 2n− 1 vectors,

all obtained in an analytical or approximated fashion; on the other, the 2n−1 vectors

obtained experimentally. This will yield a (2n− 1)× (2n− 1) mapping matrix with

elements between zero and unity.

Consider vectors ψ1, ψ2 and ψ3 to be the first three mode shapes of an arbitrary

structure, using r sensors as the experiment’s resolution:

ψ1 =


a1
a2...
ar

 ψ2 =


b1
b2...
br

 . . . ψn =


n1
n2...
nr

 . (4.4)
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A pre-correlation array is formed by combining the selected number of mode shapes

along with these same mode shapes successively arranged in a stacked fashion: the

first stacked vector will include the first two mode shape vectors; the second stacked

vector will include the first three mode shape vectors, and so forth.

ψ̂1 =


a1
a2...
ar

 ψ̂2 =


b1
b2...
br

 . . . ψ̂n =


n1
n2...
nr

 ψ̂n+1 =



a1
a2...
ar
b1
b2...
br


. . . ψ̂2n−1 =



a1...
ar
b1...
br...
n1...
nr


.

(4.5)

In Eq. (4.5), ψ̂i represents pre-correlation mode shape vectors. The reference array

must have the same structure so a MAC calculation can be performed between the

two to obtain a correlation matrix of the following structure:

CM =



ψ1r1 ψ1r2 . . . ψ1rn 0 0 . . . 0

ψ2r1 ψ2r2 . . . ψ2rn 0 0 . . . 0
...

...
. . .

...
...

... . . .
...

ψnr1 ψnr2 . . . ψnrn 0 0 . . . 0

0 0 . . . 0 ψn+1rn+1 0 . . . 0

0 0 . . . 0 0 ψn+2rn+2 . . . 0
...

... . . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . ψ2n−1r2n−1


(4.6)

where ψi and ri are the experimental or case study and the reference pre-correlation

vectors, respectively. The upper left region of the matrix corresponds to correlation

between vectors of the same dimension for both the experimental and the reference

modes, whereas the off-diagonal zero regions correspond to cases where no correlation
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can be checked because of dimension incompatibility. Finally, the diagonal terms after

the ψnrn term correspond to correlation between stacked mode vectors of identical

dimension. A high correlation result will have values close to 1 in the entire CM

matrix diagonal. A simplification of this step is to correlate only stacked vectors,

leaving out of the analysis the single mode shape vectors as the latter, when analyzed

individually, produce poor results due to individual mode shape similarity. More-

over, when comparing stacked-modes vectors only, the correlation matrix turns into a

correlation vector much more straightforward to analyze from the analyst standpoint.

The results of the correlation matrix or vector can be presented by either the

matrices themselves or bar plots, whether presented in 3D for the case of correlation

matrices and in 2D for the case of vectors, which are much more easy to understand.

An example of this plot for a 5 × 5 successful correlation matrix is presented in

Fig. 4.1.
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Figure 4.1. An example of a 5 × 5 correlation matrix.
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Model correlation matrices are very common when a mode needs to be checked for

validity in cases of computational or torsional modes. For this particular project, the

benefits of the modal assurance methodologies are used with a distinct objective: to

implement a methodology for verifying the closeness of a model boundary condition

parameters to those of an experimental result. This is why the method will be further

referred to as “MAC-based” instead of modal assurance criteria.

4.2 Resolution Study

As stated previously, the resolution chosen for data acquisition is of crucial im-

portance in the stability of the method. Indeed, the method will become less reliable

with the reduction of number of sensors; on the contrary, the higher the resolution,

the better correlation results one can obtain. Three runs of the algorithm were made,

using sixteen, eight and four accelerometers to determine a pattern of correlation.

These analyses had to be done with analytical data to determine the sensitivity of

the method to the number of sensors used without the contamination of data with

external factors such as noise. The results are presented Figure 4.2, the correlation

value for one of the cases where both vectors are analytical is plotted against number

of accelerometers. It can be clearly observed how the correlation drops dramatically

when less than eight accelerometers are used for the case of a beam of 4572 mm

length. This is also confirmed by a poor approximation in the finite element model.

Setting a general rule of thumb, the stability limit occurs when the length of

discretized elements of the beam is at least 1/10 of the length of the beam, so

Lbeam
Lelements

≤ 10. (4.7)
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Figure 4.2. Resolution sensitivity of the proposed method.



PART II: NUMERICAL VERIFICATION
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5. MATHEMATICAL MODELS

Detailed derivations of the mathematical models that were used for this work will be

described herein. Both the analytical and, though approximated, the finite element

method will provide insights of the “exact” solutions. Both methods will be used

to prove that either approach could be used as a correlation comparison reference.

This is useful specially when an analytical model cannot be obtained and a finite

element approximation has to be used. Chapter 6 in addition will address the use

of the method with data gathered from the models developed in this chapter. The

methodology used will be thoroughly explained.

5.1 Analytical Models

The experimental setup which will be explained in detail in Chapter 7 consists of

a beam-like bridge structure with four parallel beams connected by common flanges

at set distances from the boundaries for simultaneous vibration of the structure. This

structure was intended to behave like a continuum beam subjected to different types

of boundary conditions such as pivoted (pinned), fixed (clamped), elastic (spring), or

any combination of these. It should be noted that free, fixed and pivoted boundaries

are commonly referred to as “classical” boundary conditions, whereas any other form

is known as “non-classical”. Since the purpose of this thesis is not to present extensive

mathematical derivations of the solutions of all the aforementioned cases, three cases

have been selected to be developed just to demonstrate the validity of the method:

these cases are the more general pinned-pinned or simply-supported beam, a beam

with torsional springs on both ends, and a beam with rotational masses on both ends.
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Consider the two most classical cases of boundary conditions for a beam, depicted

in Fig. 5.1(a) for a simply-supported beam case (pinned-pinned), and Fig. 5.1(b) for

a clamped-clamped case.

(a) Simply-supported.

(b) Clamped-clamped.

Figure 5.1. Classic boundary conditions.

These two cases can be viewed as special cases of a beam supported both on

rotational and linear springs at ends. Classical boundary conditions are those of

more extensive use in engineering and the bibliography; namely, pinned, free and

clamped. However, these are just particular cases of beams on elastic supports where

specific values of the support spring stiffnesses are used. For instance, a beam with

pinned ends and torsional supports of zero stiffness is actually a simply-supported

beam.
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5.1.1 Simply-Supported Beam Model

Consider a continuous beam of homogeneous material; modulus of elasticity E;

second moment of area Ix; density ρ; length L; and uniform cross-sectional area A.

The governing differential equation of such a beam according to the Euler-Bernoulli

theory of beams can be written as:

−∂
2w(x, t)

∂t2
=
EI

ρA

∂4w(x, t)

∂x4
. (5.1)

For simplicity, the effects of shear, stress and rotational inertia have been neglected

in this particular case. Since Eq. (5.1) is a partial differential equation, it can be

solved by the technique of separation of variables; hence, this equation has a solution

of the form,

w(x, t) = q(t)φ(x) (5.2)

for a single mode, where q(t) is the frequency equation and φ(x) is the mode shape

equation. Substituting Eq. (5.2) into Eq. (5.1) yieds,

−φ(x)
d2q(t)

dt2
=
EI

ρA
q(t)

d4φ(x)

∂x4
(5.3)

and rearranging,

− 1

q(t)

d2q(t)

dt2
=
EI

ρA

1

φ(x)

d4φ(x)

∂x4
. (5.4)

Solving this equation requires both sides to be equal to a constant which must be pos-

itive. This constant is denoted ω2 and is the frequency parameter of the system. Now

the expression can be separated into two ordinary homogeneous differential equations

each one of which depends only on one variable as follows,

d2q(t)

dt2
+ ω2q(t) = 0 (5.5)

and
d4φ(x)

dx4
− ω4φ(x) = 0 (5.6)
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with a frequency parameter defined as

β4 =
ρAω2

EI
. (5.7)

The general solution for Eq. (5.5) is of the form,

q(t) = cos(ωt− α). (5.8)

Similarly, the general solution for Eq. (5.5) is

φ(x) = Asinβx+Bcosβx+ Csinhβx+Dcoshβx. (5.9)

The interest in the present analysis lies in Eq. (5.7) and Eq. (5.8). The solution of

the latter, though straightforward, requires a previous determination of parameter β

from the former. To complete the problem statement, boundary conditions must be

defined to solve for the specific case of interest. This is a cumbersome task that re-

quires careful mathematical manipulation along with a correct definition of boundary

conditions. The boundary conditions for a simply-supported beam can be expressed

as

φ(x = 0) = φ(x = 0) = 0

φ′′(x = 0) = φ′′(x = L) = 0.
(5.10)

Applying boundary conditions in Eq. (5.10) for the case of x = 0 into Eq. (5.9)

produces,
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φ(x = 0) = Asin 0 +Bcos 0 + Csinh 0 +Dcosh 0 = 0 (5.11)

and

φ′′(x = 0) = β2(−Asin 0−Bcos 0 + Csinh 0 +Dcosh 0) = 0 (5.12)

thus giving,

B +D = 0

−B +D = 0

⇒ B = D = 0.

(5.13)

Similarly, applying the boundary conditions corresponding to x = L produces an

homogeneous system of equations,

AsinβL+ CsinhβL = 0

−AsinβL+ CsinhβL = 0.
(5.14)

For a non-trivial solution to exist, the determinant of the coefficients must vanish,

∣∣∣∣∣∣ sinβL sinhβL

−sinβL sinhβL

∣∣∣∣∣∣ = 0 (5.15)

which produces the following requirement,

sinβLsinhβL = 0. (5.16)

The only possibility for Eq. (5.16) to be zero is when the values of βL are equal

to nπ (n = 1, 2, 3, ...). Now, the equation of mode shape along with the frequency

parameter have been completely derived and can be expressed as,
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φ(x) = sinβx (5.17)

and

β =
nπ

L
. (5.18)
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Figure 5.2. First four modes of a simply-supported beam.

This derivation produces the well known mode shape for a simply-supported beam

shown in Fig. 5.2. As expected, the shape is that of a sine function whose frequency

increases by a factor of one in each resonant frequency. It should be noted that at the

boundaries, no slope variation is observed as no constraint is acting on those ends.

5.1.2 Beam with a Torsional Spring Support at Each End

Consider now the case of a beam shown in Fig. 5.3. The material properties are

exactly the same as in Sec. 5.1.1, with the addition of two torsional springs, whose

stiffnesses are kθL and kθR for the left and right side, respectively

The boundary conditions for this case are,

φ(x = 0) = φ(x = L) = 0 (5.19)
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Figure 5.3. Beam on elastic supports.

for the displacement at both ends, and,

d2φ(x = 0)

dx2
=
KθL

EI

dφ(x = 0)

dx

d2φ(x = L)

dx2
= −KθR

EI

dφ(x = L)

dx

(5.20)

for the bending moment at both ends. Substituting the boundary condition equations

into the general solution [Eq. (5.9)] and after some manipulation, an expression of

the frequency equation can be obtained:

K∗21 +K∗1
β(1 + α)(sinβcoshβ − cosβsinhβ)

α(1− cosβcoshβ)
+

2β2sinβsinhβ

α(1− cosβcoshβ)
= 0 (5.21)

where K∗1 = KθL × 180
π

, K∗2 = KθR × 180
π

and α =
K∗

2

K∗
1
, (0 < α < 1).

The mode shape equation is determined,

φ(ξ) = sinβξ − sinhβξ + γ

[
cosβξ − coshβξ − 2β

K∗1
sinhβξ

]
(5.22)

where

γ =
sinhβ − sinβ

cosβ − coshβ − 2β
K∗

1
sinhβ

. (5.23)
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Figure 5.4. Limiting mode shapes for vibrations of a beam on elas-
tic supports (solid lines: simply-supported; dashed lines: clamped-
clamped).

This constitutes an intermediate case between the simply-supported and the clamped-

clamped cases. Fig. 5.4 shows these limiting cases, the solid line represents the simply-

supported case where both spring constants Kθ1 and Kθ2 are equal to zero; similarly,

the dotted line represents the clamped-on-both-ends case where the spring constants

are equal to infinity. Any combination of spring constants at left and right ends will

yield modal parameters within these two limits, being the upper limit the clamped-

clamped case; and the lower limit, the pinned-pinned case. This principle also applies

for the natural frequencies, as the highest will occur for the clamped-clamped model;

and the lowest, for the simply-supported model. All natural frequencies for spring

supported beams will be between these two bounds.

5.1.3 Beam with Rotational Masses on Both Ends

The third model considered in the present thesis, mainly due to discrepancies in

the observed modal parameters versus the ones predicted by the previous two models
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is a simply-supported beam with the addition of rotational inertial masses on both

ends. Consider a beam similar to that shown in Fig. 5.5

Figure 5.5. Simply-supported beam with rotational masses on both ends.

For this case, the first two boundary conditions are the same as a simply-supported

case [Eq. (5.19)], whereas the second two include the effect of the rotary inertial

masses:

d2φ(ξ = 0)

dξ2
=
−Io1
ρAL3

β4dφ(ξ = 0)

dξ

d2φ(ξ = 1)

dξ2
=

Io2
ρAL3

β4dφ(ξ = 1)

dξ

(5.24)

where ξ is the non dimensional distance x/L. Again, solving the system of equa-

tions produced by these boundary conditions will end up giving the transcendental

eigenvalue equation along with the mode shape equation:

I∗21 + I∗1
β3(1 + α)(sinβsinhβ − sinβcoshβ)

2αsinβsinhβ
+
β6(1− cosβcoshβ)

2αsinβsinhβ
= 0 (5.25)

where I∗1 = Io1 × 180
π

, I∗2 = Io2 × 180
π

and α =
I∗2
I∗1

, (0 < α < 1).

The mode shape equation is:
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φ(ξ) = sinβξ − sinhβ

sinhβ
sinhβξ + γ

[
cosβξ − coshβξ +

(coshβ − cosβ)

sinhβ
sinhβξ

]
(5.26)

where

γ =
(sinβ/sinhβ)− 1

[(coshβ − cosβ)/sinhβ]− (2I∗1/β
3)
. (5.27)

Such equation has different limiting cases than those of the spring supported case

(Eq. 5.4). Calculation of such limiting cases has to be performed by combining the

knowledge of the current mode shape with that of previous ones; i.e., when considering

the value of n for the calculation of the mode shape, some of the frequencies to consider

are of previously obtained cases (n− 2). This is a rather delicate procedure as errors

can be introduced very easily and will be explained in detail in the finite element

section. The first four mode shapes for this case are shown in Fig. 5.6.
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Figure 5.6. First four mode shapes of beam with rotational masses on both ends.

Note the similarity between the first and the third mode shapes; and between the

second and the fourth mode shapes.
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5.2 Finite Element Models

A second class of mathematical model developed for this project is a finite element

approximation. A simple finite element model (FEM) was created using a toolbox

developed at the Intelligent Infrastructure Systems Lab by Caicedo [4] using MAT-

LAB [81]. Such a model was constructed with as few nodal points as possible to

obtain acceptable results within a reasonable tolerance without significant computa-

tional demand. The purpose of building this model was simply to have two sources

of analytical reference given that a FEM can be treated as analytical.

It should be clearly noted that the development of this type of model is a mere

idealization of the real structure that will be introduced and explained in Chapter 7

and throughout this chapter, it will be considered as such.

To simulate the responses of the selected models to a variety of boundary condi-

tions and material properties, the finite element model created consists of 72 Euler-

Bernoulli beam elements connecting 76 nodes. Each beam of the structure is dis-

cretized in 17 Euler-Bernoulli beams with 18 nodes along its length. Such a model

has a total of 53 degrees of freedom, provided that each node is defined with six

degrees of freedom: three for translation and three for rotation, some of which are re-

stricted to ensure a 2D behavior of the vibrations. Further discussion of the creation

of the finite element model are include in the following sections.

5.2.1 Simply-Supported Beam Model

The finite element model of the structure for the simply-supported case was de-

veloped using 76 nodes and 72 beam elements. Each beam was discretized in 18

elements to replicate as close as possible the experimental setup used, which had 16

accelerometers in each beam. Since the pursued goal in this project is to study the

modal behavior of the structure, the finite element toolbox used calculates simple
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mass and stiffness matrices assembled from the conditions given in the input data

which include:

1. Material properties such as density, modulus of elasticity and shear modulus.

2. Section and geometric properties like cross-sectional area, second moment of

area in x and y directions and the St. Venant’s rotational constant.

3. Nodal coordinates defined by the number of nodes chosen and their coordinates

in space expressed as a 4-element vector ([node # x coord y coord z coord]).

Since this is a basic toolbox, discretization has to be defined manually.

4. Boundary conditions. The toolbox calculates all the parameters using 6 degrees

of freedom per node corresponding to three translational DOFs and three rota-

tional DOFs for a total of 3 directions (x, y and z). It was of great aid to select

the desired DOFs accordingly to avoid movement in unwanted directions.

5. Structural information like rigid links, lumped masses and springs.

After defining all the properties listed above, the process of construction of the

model is straightforward, due to the nature of the toolbox being object-oriented.

This means that what needs to be defined are objects like the material, sections,

connectivities, links, masses, but all these defined as independent objects stored as

such, instead of programmatic variables. A short example of definition of material

parameters is given below:

E = 200e9; % Modulus of Elasticity [Pa]

nu = 0.3; % Poisson coefficient

L = 4.572; % Beam length [m]

Iy = 5.036e-5; % 2nd moment of area [m^4]

Ix = 1.550e-6; % 2nd moment of area [m^4]

rho = 7850; % Material density [kg/m3]

A = 0.004; % Cross section area [m^2]
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G = E/(2*(1+poisson)); % Shear modulus [Pa]

J = 2.57e-5; % Torsional constant [m^4]

Section and material definition examples are also provided:

%%% Define Section(s) %%%

section = section(’bridge’,A,Ix,Iy,J);

In this definition, a section called ’bridge’ is created and its properties are a section

area A, second moments of inertia Ix and Iy, and torsional constant J .

%%% Define Material(s) %%%

steel = material(’steel’,E,G,rho);

This definition on the other hand, creates a material called ’steel’, whose properties

are a modulus of elasticity E, a shear modulus G, and a material density of ρ.

Sections and materials can be created as needed for a given structure and assigned

to different elements of the model, making it quite versatile at the moment of modeling

complex structures. With all the objects defined, the toolbox calculates the mass and

stiffness matrices and therefore, through solving the eigenvalue problem, the modal

parameters are obtained. Fig. 5.7 shows the nodal definitions of the structure.
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Figure 5.7. FEM node layout.
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Figure 5.7 shows only the nodal points on the beams of the structure, as only these

are of interest for the present analysis. Should a future need to study the implications

of the piers or other connections present, these could be included without problems.

The model is defined completely when the boundary conditions are set. Indeed, this

is a boundary value problem. For the simply-supported case, the boundary conditions

are set as,

y(nodes 1, 20, 39 58) =



tx = constrained

ty = constrained

tz = constrained

rx = constrained

ry = free

rz = constrained


=



1

1

1

1

0

1


(5.28)

where tx, ty and tz are the translational DOF’s along the subscripted axis, and rx, ry

and rz are the rotational DOF’s around the subscripted axis. The result of this def-

inition is such that nodes 1, 20, 39 and 58 will be restricted to translate in the three

directions, and to rotate around x and z directions; whereas they will be free to rotate

around the y axis. This is consistent with a pinned boundary.

Data entering for modeling in the fem toolbox uses a similar fashion as that shown

in Eq. 5.28 in the sense that every element that contributes any effect on a node will

have a 6-element vector associated with it. For instance, a nodal mass will have three

translational and three rotational directions; a spring element acting over a node will

have three translational and three rotational stiffnesses, and so on.

The results of the simulation using finite elements is shown in Table 5.1 for the

first five natural frequencies. As expected, there is very good concordance between

the approximate (FEM) frequencies with those of the analytical model.

For the case of the mode shapes, the output of the program is a 3D plot of each

mode. For simplicity and clarity, only three 2D mode shapes are shown in Fig. 5.8.
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Table 5.1. FEM frequency comparison (in Hertz).

Analytical FEM

7.4869 7.4869

29.9476 29.9479

67.3821 67.3856

119.7905 119.8100

187.1726 187.2464
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Figure 5.8. Simply-supported case mode shapes generated by FEM.

5.2.2 Beam With a Torsional Spring Support at Each End

In a similar way, the finite element method was used for modeling a beam with

torsional springs at both ends. This study was done for comparing the behavior of

a beam constrained in an unknown fashion at the borders. Such constraints were

conceptualized as torsional springs that would prevent the system to vibrate freely.

This model results in a very useful general tool to understand the vibration of similar

systems from the simply-supported case, to the clamped-clamped case. Indeed, the

former is nothing but a special case of a beam with torsional springs at both ends
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whose stiffnesses are zero; whereas the latter is the case of a beam with springs’

stiffnesses close to infinity. Any other combination of stiffnesses will lay between

these two. Again, the natural frequencies and mode shapes for an intermediate value

of stiffness (between zero and infinity) will be presented shortly.

The structure was discretized in a similar way as in the previous section, with the

only difference being that additional nodes had to be declared for defining the springs.

Springs are defined as extra elements connecting fictitious orthogonal nodes to those

already existing. For the case of this investigation, springs were created for the

boundaries only. Figure 5.9 depicts the element configuration of this model, including

the spring elements acting over the boundaries which correspond to the vertical green

lines numbered 1-8, whereas the horizontal lines between dots represent the beam

elements. Rotational springs are represented this way in the model but this does not

mean that they are physically as shown. This type of element is in fact conceptualized

as a box having shear resistance across the faces other than the axial face. An example

of the definition of these elements is:

k(nodes 1, 20, 39 58) =


tx
ty
tz
rx
ry
rz

 =


0
0
0
0
ki
0

 (5.29)

where ki is the stiffness of the spring in N m/rad. The stiffness used for this example

is k1 = 75000 Nm2 which had to be transformed to units of stiffness per degree of

rotation by multiplying it by 180 /π and k2 = 45000 Nm2 which is 60 % of the oppo-

site stiffness. This difference of stiffnesses is evident when looking at the mode shape

plot and by noticing that the maximum and minimum points are slightly shifted to

the right due to a higher constraint at the left side causing an unsimmetric shape.

If the springs were considered of equal stiffness, the plot would have been perfectly

symmetric.
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The boundary conditions for this model are similar to those of the simply-supported

with the difference that they have an additional effect imposed by the springs.
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Figure 5.9. Layout of elements generated by the FEM.

The natural frequencies obtained versus those of the mathematical model are

shown in Table 5.2, and the first three mode shapes in Fig. 5.10. Note that the

mode shapes are somewhat similar to those of a clamped-clamped case which is ex-

pected, since the boundaries indeed have constraints in rotation.

Table 5.2. FEM frequency comparison for a system with rotational
springs on both ends (in Hertz).

Analytical FEM

15.4534 15.7484

42.9335 43.6126

84.7279 85.8527

140.8820 142.4655

167.3537 213.5939
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Figure 5.10. Elastic support case mode shapes generated by the FEM.

5.2.3 Beam With Rotational Masses on Both Ends

The third finite element model constructed is the counterpart of the theoretical

simply-supported beam with rotational masses on both ends. Given the nature of the

experimental setup which will be explained in detail in Chapter 7, a structure was

built in such a way that two torque arms were attached to the boundaries so that a

boundary-varying structure could be achieved. These arms can be fixed to produce a

clamped boundary; or can be let free to produce a pinned boundary. Unfortunately,

they add a considerable amount of rotary inertial mass to the boundary, changing the

properties of the intended simply-supported configuration. This is the reason why a

third model had to be studied. Consider the beam shown in Fig. 5.5. By inspection of

the experimental structure shown in Fig. 7.3 the most noticeable similarity between

these two pictures is the big attachments at both ends. For the experimental case,

it was not very difficult to determine the inertia effect of these elements, as they are

produced by plates rotating along their edges. The rotational moment of inertia for

this case is,

I0 =
1

3
mL2 (5.30)
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where m is mass of the plate, L is arm length and I0 is the rotational inertia. The

masses of the attachments were estimated through the CAD software used for de-

signing the structure and are m1 = 28 kg, and m2 = 14 kg which will produce

two rotational moments of inertia, one for each end, whose units are kg m2 which

were then transformed to units of inertia per units of rotation by multiplying them

by 180/π, and then transformed to the dimensionless rotational moment of inertia

constant,

I∗ =
ρAL3

I0
. (5.31)

For the setup of study, these values are I∗1 = 54, and I∗2 = 27. The finite element

model was constructed using the same number of nodes and elements as the two

previously described. An internal condition stating the rotational mass effects was

included for each end which will not vary the node and element layouts shown in

previous figures. Boundary conditions were set similarly as these cases. The results

are shown in Table 5.3.

Table 5.3. FEM frequency comparison for a system with rotational
masses on both ends (in Hertz).

Analytical FEM

5.7413 5.7851

13.6967 13.9492

25.0677 25.2683

50.1448 50.3739

93.4043 93.5265

It is evident how close these frequencies are, confirming that this finite element

model is correctly constructed. Some differences between the values could be caused
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by the difficulty that posed to estimate accurately the type of rotational moment

of inertia due to the complexity of the structure. For simplicity this parameter was

considered as a rotating plate along its edge, however, some other shapes and off-axis

considerations were not taken into account. Fig. 5.11 shows the first three modes of

the structure.
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Figure 5.11. Modeshapes of a simply-supported beam with rotational
masses on both ends, generated by the FEM.

Three analytical models and three finite element models have been developed.

These were chosen as the source of the model space which will be compared with the

“unknown” experimental model to determine the closest correlation.

5.2.4 Finite Element Model Details

The finite element formulation used in the present thesis calculates the stiffness

and mass matrices from nodal information in which each node has six degrees of

freedom. Figure 5.12 shows a detail of the six degrees of freedom for each node. In

this figure, plain numbers represent nodes, boxed numbers represent elements, R1 to

R6 represent the six DOF for the first node; and R7 to R12, the six DOF for the

second node. Therefore, the global mass and stiffness matrices are of size 6n × 6n
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where n is the number of nodes, and r are the the DOFs constrained by the boundary

conditions.

Figure 5.12. Beam element with element coordinates.

Mass and Stiffness Matrices

It is assumed that vibration only occurs in 2D; therefore, the unwanted DOF are

constrained in such a way that only the desired directions of movement are char-

acterized by the finite element analysis, reducing the original problem to a 3 DOF

per node: one for translation in the vertical z direction, one for translation in the

horizontal x direction, and one for rotation around the y direction.

Consider a beam element. The stiffness influence coefficient kij is the force in DOF

i due to a unit displacement or unit rotation in DOF j. From the principle of virtual

displacement, the general equation for kij is:
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kij =

L∫
0

EI(x)ψ′′i (x)ψ′′j (x)dx (5.32)

which can be evaluated analytically for i, j = 1...6, resulting in element stiffness

matrix:

k̄e =
EI

L3



L2A
I

0 0 −L2A
I

0 0

0 12 6L 0 −12 6L

0 6L 4L2 0 −6L 2L2

−L2A
I

0 0 L2A
I

0 0

0 −12 −6L 0 12 −6L

0 6L 2L2 0 −6L 4L2


(5.33)

where E is the modulus of elasticity, A is the cross-sectional area, I is the area mo-

ment of inertia and L is the length.

Similarly, the mass influence coefficient mij is the force in DOF i due to unit linear

acceleration or unit angular acceleration in DOF j. Applying again the principle of

virtual displacement, the general equation for mij is:

mij =

L∫
0

m(x)ψi(x)ψj(x)dx (5.34)

which can be evaluated analytically for i, j = 1...6, resulting in element mass matrix:

m̄e =
mL

420



140 0 0 70 0 0

0 156 22L 0 56 −13L

0 22L 4L2 0 13L −3L2

70 0 0 140 0 0

0 54 13L 0 156 −22L

0 −13L −3L2 0 −22L 4L2


(5.35)

where m is the total mass of the element.
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The 6 × 6 element stiffness matrix k̄e and the 6 × 6 element mass matrix m̄e

are transformed in global element coordinates through an appropriate transformation

matrix, A [85].

K = Ak̄i (5.36)

M = Am̄i. (5.37)

Finally, the natural frequencies and mode shape vectors are obtained through

solving the eigenvalue problem for the eigenvalues and eigenvectors, respectively.

Kφ = ω2Mφ (5.38)

Interpolation functions

The displacement of the beam element shown in Fig. 5.12 is related to its six DOF

through:

6∑
i=1

ui(t)ψi(x) (5.39)

where ψ is the displacement of the element due to unit displacement. The 6 × 6

stiffness and mass matrices of Eqs. 5.33 and 5.35, respectively turn into 4 × 4 local

element matrices when eliminating the coefficients associated with axial DOF at each

node. Therefore, ψi(x) satisfies the homogeneous boundary conditions:

i = 1 : ψ1(x = 0) = 1, ψ′1(x = 0) = ψ1(x = L) = ψ′1(x = L) = 0 (5.40a)

i = 2 : ψ2(x = 0) = 1, ψ′2(x = 0) = ψ2(x = L) = ψ′2(x = L) = 0 (5.40b)

i = 3 : ψ3(x = L) = 1, ψ′3(x = 0) = ψ3(x = 0) = ψ′3(x = L) = 0 (5.40c)

i = 4 : ψ4(x = L) = 1, ψ′4(x = 0) = ψ4(x = 0) = ψ′4(x = L) = 0 (5.40d)
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Assuming no shear effects, the governing equation for a beam loaded at its ends is:

EI
d4u

dx4
= 0 (5.41)

whose general solution is of the form,

u(x) = a1 + a2

(x
L

)
+ a3

(x
L

)2
+ a4

(x
L

)3
. (5.42)

After enforcing the boundary conditions of Eqns. 5.40a, constants a1, a2, a3 and

a4 are determined.

ψ1(x) = 1− 3
(x
L

)2
+ 2

(x
L

)3
(5.43)

ψ2(x) = L
(x
L

)
− 2L

(x
L

)2
+ L

(x
L

)3
(5.44)

ψ3(x) = 3
(x
L

)2
− 2

(x
L

)3
(5.45)

ψ4(x) = −L
(x
L

)2
+ L

(x
L

)3
(5.46)

which can be used as interpolation functions for the finite element model.

Additional Elements

Once the nodal contributions to the global mass and stiffness matrices have been

established, the interaction between such nodes was defined through rigid links. Four

rigid links were defined at equidistant lengths along the beam; namely, at x = 0,

x = L/3, x = 2L/3 and x = L. The definition pattern for these rigid links were to fix

the node on the front element as master node, and link the corresponding nodes on

the other beams as slave nodes. The rigid link diagram is shown in Fig. 5.13, where

M refers to master node; and S, to slave node.
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Figure 5.13. Detail of the FEM rigid links.

Notice that these rigid links are not defined as beam elements, therefore they don’t

have any contribution to the overall mass and stiffness matrices.

The boundary condition definition was briefly explained in Sec. 5.2.1. The finite

element toolbox used in the present thesis has the capability to create a boundary

condition in the same way as a nodal DOF is defined, that is to say, a vector of

six elements (three for translation and three for rotation) is defined with values of

zero and one (zero for free and one for constrained). Figure 5.14 depicts an example

definition of boundary conditions for a pinned-free beam element. The left side has

a pinned boundary with free rotation only around the y axis and all other DOFs

constrained; and the right side, has a free translation along the x and z axis, free

rotation around the y axis and all the other DOFs are constrained.

Similarly, lumped masses and spring elements are defined by 6-element vector. For

the former case, three translational mass-contributions and three rotational inertia-

contributions have to be defined; and for the latter, three linear spring stiffnesses and

three rotational spring stiffnesses have to be defined.
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Figure 5.14. Boundary condition definition example.

The rotational mass FEM explained in Sec. 5.2.3, had only one rotational compo-

nent acting around the y axis, which is consistent with a 2D model. Lumped masses

on each nodal point were neglected. The mass definition is shown in Fig. 5.15. On the

other hand, the spring supported model had rotational springs acting in the boundary

nodes around the y axis, as element that prevented the nodes to rotate freely. As

explained in Sec. 5.2.2, springs are conceptualized as boxes having shear resistance

across the faces other than the axial face.

Figure 5.15. Rotational mass definition example.
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6. NUMERICAL VERIFICATION

6.1 Introduction

As stated previously, the development of the mathematical models used in this

thesis is the first part of a much broader procedure which is the numerical verifica-

tion of the proposed technique.

A model correlation method has been proposed but before it can be implemented

with experimental data, it has to be tested with unpolluted data so that it can prove

its reliability. In the present chapter, this verification will be performed in an iterative

way so that it can be further implemented with real data. Two sources of data can

be used instinctively from the mathematical models already discussed: the analytical

and the finite element models. It is expected that for the analytical case, a perfect

correlation occurs; whereas for the finite element case, which is an approximation, a

close-to-perfect-correlation occurs.

6.2 Methodology

A good approximation of the structural model was made in Sec. 5.2.3. This case

will be used to run the correlation procedure against the three developed mathemat-

ical models, each one with different parameter values. This constitutes the ‘model

space’, a group of distinct parametrized models to which the experimental case is

going to be compared until the best match is determined. The mathematical models

to be used are:

1. Simply supported beam with both ends free for rotation.

2. Simply supported with:
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• Rotational springs on both ends with three different kθi values on one end,

and five proportional values going from 20% to 100% of kθi on the other

end. This gives a total of twenty five cases.

• Rotational inertial mass on both ends, with five different Iri values on one

end, and five proportional values going from 20% to 100 % of Iri on the

other end. This gives a total of twenty five cases.

3. Clamped boundary on both ends (clamped-clamped beam.)

The described list contains roughly 80 different analytic models to compare from.

It is clear that the solution space can be as wide as needed to determine the closest

parameter correlation. The procedure to simulate the unknown boundary condition

case is deatiled below:

1. Define the number of modes n to be simulated.

2. Obtain the eigenvalues, ωn and mode shape vectors φn from the analytical

equations or FEM.

3. Aproximate each mode to a state-space model corresponding to the associated

degree of freedom.

4. Obtain the response of the system to a simulated input signal for each degree

of freedom by solving the equations of motion. This constitutes the simulated

data.

5. Apply an identification technique (FFT or ERA) to generated data to obtain the

modal parameters. This step is to replicate a similar procedure of experimental

modes. Noise or any other disturbance can be added in this step.

6. Compare the obtained mode shapes to those of the analytical models using the

correlation method.

7. Plot the correlation matrix in a bar plot to determine the highest value and,

therefore, the best model match.
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6.3 Model Selection

Figure 6.1 presents five subplots, three for individual and two for combined (stacked)

mode shapes. In each subplot, four curves are overlaid which correspond to the sim-

ulation, the simply-supported, the clamped-clamped and the rotational mass models.

By inspection of this figure, it is evident that there are some lines not matching in

all five subplots. In the figure, the red dotted lines with squared markers represent

the mode shape of the case study; i.e., the simulation obtained from an analytical

equation which is considered the “experiment”. The continuous blue lines represent

the analytical model of the same case but obtained through the FFT process to recre-

ate the method as close as possible to the real experiment. The dashed black and

dashed green lines correspond to the simply-supported and clamped-clamped cases,

respectively.

In the first subplot, all four lines are almost coincident and a no conclusions can be

made to determine which model is closer to the simulated case. The second subplot

shows an almost collinear behavior between the simulation and the rotational mass

models, whereas a slight deviation of the simply-supported and clamped-clamped

models from that of the simulation. Although a deviation is observed, no conclusions

can be made at this point either. The third subplot shows a significant deviation

of the simply-supported and clamped-clamped models from that of the simulation

and, at the same time, it shows how a consistent convergence between the simulation

and the rotational mass analytical model. The last two subplots show a comparison

between models but using stacked vectors instead of individual vectors; for these two

cases, a consistent collinearity is observed between the rotational mass model and the

simulation. Three modes have been used for explaining this step. Depending on the

necessity, more mode shapes can be used to have a better convergence, depending

on the complexity of the model and the availability of good experimental high mode

shapes.
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Although the previous step produces a fair amount of information about which

model to select, it does not provide a parametric result regarding the boundary con-

ditions of such a model. The goal of this technique is to determine with a great deal

of certainty the parameters involved in the chosen model. For example, if a spring-

supported model is selected, the method would provide an interval of spring-stiffness

values as parameters of the system.
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Figure 6.1. Modal vector comparison.

6.4 Correlation Analysis

Once the visual inspection has been conducted, the ultimate mathematical veri-

fication is done through the correlation methods described in Chapter 4. Consider

again the simulated experiment just detailed in the previous section. Suppose that

some given mode shape vectors have been obtained after performing impact testing to

a structure. Such vectors are shown in Fig. 6.2. This is going to be the experimental

“case study”. Suppose also that the only assumption made for this mode shape is

that it corresponds to the vibration of a beam of known dimensions and material con-

stants but unknown boundary conditions (which is usually the case); i.e., parameters
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M, C and K have been experimentally obtained. The proposed technique’s aim is

to compare this case study vector with several analytical model cases to determine

which resembles the closest to it.
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Figure 6.2. Case study.

After comparing this mode shape with the classical boundary-condition models

similar to the step described in Sec. 6.3 one can conclude preliminarily that the

obtained mode shape corresponds to a beam with rotational masses on both ends.

However, this is still a vague conclusion because such a beam could have infinite

number of combinations of rotational inertias at its ends; therefore, a refined model

updating step is to be performed to determine with an acceptable tolerance, the

values of such parameters. As an example, nine rotational-inertia and nine spring-

stiffness combinations are going to be used leaving aside the simply-supported and

clamped-clamped cases, since these are special cases of the spring-supported beam.

The solution space is then composed of eighteen candidates just for this example.

These possible models are going to be correlated with the simulated “experimental”

case whose model is supposedly unknown. The graphical results are shown in Fig. 6.3,

where it is clear that the unknown case (red-colored) is significantly off from any

spring-supported model case (dark-green-colored). This will be evident in the bar
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plot of the correlation values. On the other hand, when comparing the rotational

mass model cases (blue-colored), a much closer relationship is observed. In fact, one

of the cases gets really close to the experimental case. For a refined result, the analyst

could just add more case combinations to the solution space to get an almost perfect

match.
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Figure 6.3. Correlation comparison of spring-supported and
rotational-mass parameter combinations.

A good preliminary conclusion can be obtained from observation. Indeed, from a

quick look to these, it is clear that for cases (e) and (h), very close correlations between
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the experimental (red) and rotational mass (blue) models are occurring. However, our

aim is to determine which parameters are causing this correlation; therefore, further

study shall be performed to obtain such values. The algorithm carries out compar-

isons between the experimental model and all the models included in the solution

space, giving one correlation index for each comparison. Each mode shape vector

of the solution space has two additional cells containing the two boundary condition

parameters which can be easily extracted after determining the highest correlation

index. These results are shown in Fig. 6.4(a) and 6.4(b); the first, corresponding to

the spring-supported beam cases; and the second one, to the rotational-inertia cases.
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Figure 6.4. MAC-based correlation results.

Figure 6.4(b) confirms the preliminary visual conclusion made from Fig. 6.3: that

is to say that combinations 5 and 8 are the closest-related models to the experimental

one because the lines corresponding to the model and the simulation are mostly
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coincident in these two plots. The final result of this example study is the output

of the model parameters in the command window of MATLAB, which is shown Fig.

6.5.

Figure 6.5. MATLAB command window results.

The obtained parameters are I1 = 52.712 Nm2/rad and I2 = 31.627 Nm2/rad.

The exact values used to simulate the experimental case were I1 = 58.213 Nm2/rad

and I2 = 34.982 Nm2/rad, which yield errors of 9.44% for I1, and 6.1% for I2 and

an overall correlation parameter of 0.9987 which is acceptable to adopt this model

combination as the correct boundary conditions for this experimental setup.



PART III: EXPERIMENTAL VALIDATION
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7. EXPERIMENTAL SETUP

7.1 Introduction

To experimentally validate the proposed method, a special setup was designed and

constructed. For designing this structure, standard mechanical design procedures

were employed. Not all steps performed will be explained in detail as this is not the

scope of this thesis. The steps [82] include:

1. Conceptualization

2. Research

3. Feasibility assessment

4. Establishing the design requirements

5. Preliminary design

6. Detailed design

7. Production planning and tool design

8. Production

7.2 Conceptualization & Design Parameters

Some important requirements and concepts had to be considered in this structure,

the most relevant were:

1. The dominant behavior of the structure should be similar to those of a beam.

Therefore, a slender and long configuration had to be selected. This condi-

tion derives from the premise that a simple structure was to be used for the

experimental validation.
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2. The structure should allow both vehicular and pedestrian transit for lab anal-

ysis; therefore it needed to be wide enough to allow for such traffic.

3. The structure should also allow complete and fast assembly-dissasembly of all

its components.

4. The structure had to have the capability to replicate many types of boundary

conditions; namely, pinned, fixed, and even spring-supported configurations in

a fast and effective way.

5. To contribute to damage detection projects which are an important field studied

by the IISL group on a regular basis, the structure should be constructed so

that damage conditions might be simulated for future studies.

6. For realistic modal testing, a first natural frequency around 5 Hz was set as a

requirement.

7.3 Research

To comply with the requirements listed in Sec. 7.2, existing laboratory structures

in similar labs were considered as a reference. Unfortunately, the six conditions

described above made this search a difficult task. Nevertheless, a good approximation

for the needed setup was found in the Smart Infrastructure Management Laboratory

at the University of Florida, which is shown in Fig. 7.1 and whose generous sharing

of information was important in the completion of the present work. This structure

however, did not meet all the requirements because it is a truss structure and its

behavior as a beam was very limited. An additional two structures were considered

but unfortunately neither met all the requirements.
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Figure 7.1. Scaled truss bridge for SHM. (Courtesy of Dr. Jennifer
A. Rice, University of Florida at Gainesville).

7.4 Design and Construction

After having discussed many of the above-listed features with fellow members of

the IISL group, a conceptual design was obtained. This design is shown in Fig. 7.2.

The design consists of four 3-section beams connected by endplates with bolts and

nuts; two boundary assemblies, each consisting of a cylindrical shaft between two

pillow block bearings with a pivoting plate connecting the beams with the pin; and

two pseudo-stiffening plates such that all four beams of the bridge have synchronized

vibrations. These plates are called pseudo-stiffening because they don’t provide any

significant structural addition to the behavior of the bridge as their purpose is only

to enforce synchronized vibration.

As shown in the figure, most of the features are included in the conceptual design:

it is a structure that can be modeled as a beam because it does not have any addi-

tional structural elements that would make it behave otherwise; it has discontinuities
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Figure 7.2. Scaled bridge. Conceptual design.

in each beam which could be considered as damage for further studies; and it has

different boundary condition configuration features.

A finite element model using SAP2000 was developed to test many commercial

steel sections and determine the most suitable one for obtaining the desired first nat-

ural frequency. From this analysis, it was determined that a HSS 3” × 2” × 3/16”

rectangular hollow structural section was the most appropriate. It must be noted

that this analysis was made considering uniform continuous beams and no rotational

masses at the ends. The frequency obtained from the model was around 7 Hz.

Once the sections were selected, the next step in the design process was to develop

detailed drawings. A set of the most relevant details of these drawings is included

in the Appendix. The drawings were submitted to the selected machine and welding

shop for construction under the supervision of the author. Like any other design,
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some problems were present after the initial assembly that needed to be corrected;

the most important was a twisting of the structure once assembled, due to the weld-

ing process. Manual alignment was performed to correct this issue. Nevertheless, the

received work was acceptable according to the desired expectations.

A special connection was designed for changing the boundary conditions. The

structure has the ability to pivot at the ends through a pin and bearings. It was ex-

pected that the pin can be fixed to the piers through end plate connections whereas

the bearings supply almost frictionless rotation.

To replicate damage in the structure, some steel elements can be replaced by a

similar section of different material. For such a case, three additional aluminum

beam-sections were ordered. Some of the desired effects that these sections provide

are discontinuity of structure, change of stiffness and change of distributed loading

profiles. Finally, the last element is a deck or platform which is not shown in the

figure but will allow safe walking and vehicle traffic over the structure. Vehicle traffic

will be limited only to scaled vehicles. The final dimensions of the bridge were:

• Length = 4500 mm

• Width = 1000 mm

• Height = 500 mm

• Beam section length = 1500 mm

• Approximate weight = 250 kg

7.5 Assembly

The designed structure is 100% disassemblable, for setup versatility and storage

capability. The duration of assembly was around one working day (eight hours), but
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initial adjustments and corrections took this period to almost two weeks. For the

joints between beam-sections, bolts and nuts were used and the tightening procedure

was performed using a pneumatic power tool to have similar torque in each bolt.

Preliminary torquing of the bolts was made manually, but this caused excessive static

deflection at midspan. Some pictures of the assembled structure will be shown below:

Figure 7.3 depicts the detail of the boundary condition plate. The cylindrical shaft

is the pin which rotates freely when the four bolts (marked with a circle) are not

secured. When the bolts are secured (as in the picture), the boundary turns into a

clamped one. Anchoring of the structure to the floor as well as connections between

beams and end plate are partially shown.

Figure 7.3. Detail of mechanism for modifying the boundary condi-
tions: bolted = fixed; unbolted = pinned.

An aerial view of the structure is depicted in Fig. 7.4. The bridge has four beams

(from top to bottom of the figure) and each beam has three sections separated by

connection flanges (marked with two rectangles). For damage simulation, these con-
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nections can be left loose, a section of the beam can be removed without producing

significant structural instability, or a section can even be replaced by an aluminum

section. The versatility of such a configuration is considerable.

Figure 7.4. Aerial view of the structure.

This section has been intended to be a brief description of the steps taken to have

a feasible experimental setup for the project. To provide detailed design calculations

and material selection procedures is out of the scope of this thesis.
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8. STRUCTURAL IDENTIFICATION AND CORRELATION OF CASE STUDY

8.1 Introduction

Most modeling problems pose a challenge as the results and findings obtained from

a model always have to be later correlated with experimental observations. As stated

in early chapters, no model is perfect, and paraphrasing George E.P. Box: “All mod-

els are wrong, but some are useful.”

The proposed models are not the exception and from the earliest phase of the

project, this fact was anticipated. Trying to model a complex 3D structure with an

Euler-Bernoulli beam model which is essentially a 2D model represents the first, and

ultimately, the main obstacle. Nevertheless, with the appropriate adjustments, such

a model can be very useful to properly characterize the system’s behavior. In this

chapter, three identification processes will be applied; namely, one assuming that the

bridge is behaving like a simply-supported beam; a second one, assuming the most

critical case of an elastically supported beam which is a clamped-clamped case; a

third one, updating the first two by introducing rotational masses and springs at

both ends accordingly.

The identification will be done by the simple Fast Fourer Transform (FFT) tech-

nique, which will be applied to raw data collected from the structure to determine the

natural frequencies by peak picking. In Section 8.4, three examples of model selection

are developed so that the reader fully understands the mechanics of the method. As

repetitive as this section and its sub sections may seem, they are intended to pro-

vide clarity towards the first step of the technique which is proposed to be a good

model selection. After having understood the previous step, an example with real



75

experimental data gathered from the constructed structure is performed in Section

8.5, where previous knowledge of the model is used as starting point. In this section,

parameter estimation and model refinement are explained. At the end of the chapter,

the reader shall fully understand the two steps needed for a correct application of the

proposed methodology.

8.2 Experimental Setup

A general experimental setup was assembled for testing the structure. Sixteen

PCB PIEZOTRONIC piezoelectric, ceramic shear ICP R© accelerometers were used in

conjunction with two S+O ANALYZER data acquisition boxes with eight channels

per box. Accelerometers were attached to the structure with magnetic mounts in

several configurations which are listed in Table 8.1 and schematically described in

Fig 8.1. For the case of Table 8.1, z corresponds to the vertical direction, longitudi-

nal refers to vibration along the beam’s horizontal x axis, and transversal refers to

vibration along the beams transversal y axis. For this thesis, only configurations 2

and 3 will be analyzed to have a case as close as possible to that of a 2D vibrating

beam.

Table 8.1. Experimental configurations.

Configuration No of sensors Location Figure and symbol

1 16 beam 1 8.1(a), red dot

2 16 beam 2 8.1(a), blue squares

3 16 beam 3 8.1(a), green triangles

4 16 beam 4 8.1(a), orange diamonds

5 14 nodal pts 8.1(b), yellow sand-clocks

6 4 flange A 8.1(b), purple stars

7 4 flange B 8.1(b), red stars
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(a) Longitudinal configurations.

(b) Transversal configurations.

Figure 8.1. Experimental configurations.

Impact hammer testing was performed in each experiment with a sampling fre-

quency of 1024 Hz to obtain useful frequency information up to half that value

according to Nyquist-Shannonn theorem, i.e., 500 Hz. The hammer used was a PCB

modally tunned hammer with a soft tip for low frequency excitation. Technical details
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of all the equipment used in all conducted experiments are included as appendices

however, the frequency range of such hammer is shown in Fig. 8.2

The standard experiment is described below:

1. Accelerometer mounting to the structure either using magnetic mounts or wax,

depending if the added weight of the magnet is going to induce a parameter

modification or it could be neglected. For this experiment, the added mass of

accelerometer mounts is negligible.

2. Wiring between sensors, hammer and DAQ boxes. The type of accelerometers

used for the experiment work with 10-32 low-noise type coaxial cables.

3. Initial settings in the data acquisition software including number of boxes to

be used, active/inactive channels, type of signal (AC,DC), sampling frequency,

time frame of each acquisition, data format, sensitivity of instruments, and units

of measurement.

4. Impact testing. The structure is hit repeatedly, for around twenty times, leaving

time between hits so that it can get back to zero vibration before the next hit

(for this structure, usually 10-15 seconds) for around 20 times. The more hits,

the better the results due to more averaging of impact response signals

5. After the first impact testing practice, data must be checked to verify its quality,

consistency between hits, response form and whether it is meaningful. Only

after this step, repeated testing can begin.

6. Post processing. With all the data sets properly stored, processing them with

any selected technique can be performed. In this thesis, as mentioned earlier,

the fast Fourier transform is used.
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Figure 8.2. Hammer response curves (from PCB Piezotronics).

8.3 Algorithm for Modal Identification Fast Fourier Transform

The goal of modal identification is to obtain modal parameters of a structure such

as natural frequencies, mode shapes and damping ratios from experimental data. As

explained in Chapter 2, many techniques are available both in the frequency and

time domains. Natural frequencies were estimated using the fast Fourier transform

of the response acceleration signal of each accelerometer. A MATLAB code was used

with inputs of impact signal and response acceleration data, and outputs of frequency

response function (FRF or TF), real and imaginary TF, input spectra, and coherence

function. Outputs of the code can be conveniently filtered by accelerometer or by

hit number to determine specific information pertaining a desired location of the

structure. The principal technique used in the code was the fast Fourier transform

(FFT), which takes a discrete signal in the time domain and converts it into its discrete

frequency-domain representation. This technique is extremely useful for computing

modal parameters, as it shows resonant frequencies of a response signal as peaks which
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are easy to identify. It is also popular because most of real life structures cannot be

tested on a shake table or with a shaker to excite the desired frequencies. An example

of the input and output signals for an arbitrary location of the bridge is shown in Fig.

8.3: the top graph is the impact signal, whereas the bottom graph is the acceleration

response.
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(b) Acceleration history (output signal).

Figure 8.3. Experimental input/output signals.

This constitutes the first step in the algorithm, so the analyst can make sure

everything is normal in the input and output.

The next step is to choose which hits are good for analysis and which have to be

neglected. As a manual technique, hammer hitting is not free from errors; at first, it
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would appear to be an easy task, but it usually takes some time before one becomes

experienced with the instrument to obtain the right hit. Figure 8.4 depicts the impact

signal for a complete test, in which it is evident that impact peaks 9, 10 and 11 are

in the same hit, as well as peaks 14 and 15. For error minimization, these have to be

eliminated from the algorithm, to minimize errors.
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Figure 8.4. Hammer hit peak choosing.

A second check for choosing the right hits is to analyze each hitting interval, i.e.,

the force versus time of each hit within the chosen input window. There must be

only one hit in the window for the algorithm to produce good results. If two or more

impacts are observed, the hit has to be discarded as well. Figure 8.5 shows a plot in

which all the hits within the chosen window have a single peak, the solid blue line is

the window and the superimposed lines are all the hits. As two or more peaks appear,

the hit should not be included in the analysis.

The next checkpoint is to determine if the impact signal is large enough to excite

all the frequencies of interest. A good technique for this verification is to get the

hammer response curve for the experiment, similar to Fig. 8.2. This plot will deter-

mine if the chosen tip is suitable for exciting the modes of interest. Of course, this

is intended when specific frequencies are to be studied. Nevertheless, time, resources

and effort are used in every experiment, and it is not desirable to waste them by not
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Figure 8.5. Number of peaks within an imput window.

paying attention to all the details.

Just like the input signal needs to be thoroughly analyzed, the output signal must

be taken care of as well. One of the most important aspects of impact testing is the

use of a good window for the response (different than the input window described

above). This resource is necessary due to the fact that a lightly-damped structure,

such as the experimental setup, will not cease vibrating within the short time be-

tween hits. Even if this time is extended as much as possible, very small amplitude

vibrations will remain on the system for rather long time. To overcome this prob-

lem, the signal must be forced to decay to zero within a reasonable window width.

The most popular impact weighing window used for this purpose is the exponential

which is used to “force the data to satisfy the periodicity requirements of the Fourier

Transform” [83].

After all these “sanity checks”, one is ready to obtain the plots of interest: the

FRF, and the imaginary transfer function from which the mode shapes and natural

frequencies and damping ratios can be determined.
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8.3.1 Modal Analysis Results of Experimental Setup

The MATLAB algorithm output is a set of plots for fully understanding the re-

sponse of the system in the frequency domain. Some of these plots will be shown

herein; specially the two most important: FRF and mode shapes. It should be noted

that a preliminary definition of the peak region must be made for the algorithm to

determine the exact frequency at which a mode appears. This is done in the program

setup and is very useful for modal verification. Figure 8.6 shows the most relevant

code outputs:
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(b) Imaginary part of FRF.
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Figure 8.6. FFT code outputs.

Figure 8.6(a) shows the input response for the chosen hammer tip. This means

that frequencies up to 400 Hz can be excited by the hitting action. The imaginary

part of the FRF is plotted in Figure 8.6(b). This plot is particularly useful for deter-

mining the mode shapes as the phase and relative amplitude of each peak determines

the corresponding phase and amplitude of each sensor position. The better the res-
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olution (i.e., the number of sensors), the better the mode shape estimation. The

resolution issue was addressed at the end of Ch. 4.

In an ideal testing methodology, the complete FRF matrix could be obtained

by hitting every sensor location and acquiring and post-process the generated data.

Unfortunately, the testing procedure has to be planned considering the time factor

and performing n hammer tests would result in a significant consumption of time (n

is the number of sensors), this is why only one row or column of the FRF matrix was

obtained which provided fairly acceptable mode shape results. Figure 8.6(c) shows the

FRF for all the accelerometers where the first four peaks can be clearly distinguished

and finally, Figure 8.6(d) depicts the mode shape estimation for the first three modes

which were later correlated using the proposed method.

8.4 Correlation to a Simply-Supported Beam

The correlation process has been designed to be fully computational. That is to

say that an experimental model should be compared to a group of candidate models

automatically to determine the closest relationship which is the updated model. To

show the methodology in this thesis, the correlation study will be shown individually

for three example cases. In the first case, the model space consists of a unique element

corresponding to the simply-supported beam: single mode shape vectors along with

stacked vectors are plotted on the same axes, as explained in Chapter 4; and finally,

all vectors: single modes and stacked modes are computationally correlated. For

demonstration purposes, a group of superimposed plots will be presented in which all

three modes are compared separately as well as stacked (similar to Fig. 6.1). The

first three normalized mode shape vectors, both in amplitude and in distance of a

simply-supported beam with a resolution of sixteen accelerometers (plus two nodes

at the ends) are shown in Fig. 8.7, 8.8 and 8.9. Each figure depicts a mode shape

column vector with its correspondent graphical representation so the reader can better
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understand what a mode shape vector is and looks like. It must be kept in mind that

these are the analytical model mode shapes, to which the experimental are going to

be compared. This explanation will be made only for the simply-supported case as

the procedure becomes repetitive for further models.
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Figure 8.7. First mode shape vector along with its graphical repre-
sentation. SS model.

These three mode shape vectors will be correlated with the corresponding three

experimental mode shapes with the addition of two stacked mode shape vectors.

The first stacked mode shape vector and its graphical representation is shown in

Figure 8.10. Due to space limitations, the second stacked vector which consists of

54 row-elements will not be displayed, although its graphical representation will be

presented in the results section. After this preliminary step, the procedure becomes

straightforward: five experimental vectors are going to be compared graphically and

iteratively against five analytical vectors to determine the degree of linear relation

between them. The procedure, as described in Sec. 4.1, will be applied herein for this

model case. Two plots will be presented: a first, corresponding to the mode shape

comparison and a second, one corresponding to the correlation matrix.
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Figure 8.8. Second mode shape vector along with its graphical rep-
resentation. SS model.

8.4.1 Graphic Results for the Simply-Supported Case

Figure 8.11 shows the graphic relation between five experimental vectors versus five

analytic vectors. A close relationship can be observed for the first two modes as the

red and black lines are almost collinear; however, for the third mode and subsequent

sub-plots, this trend begins to disappear and significant discrepancies between lines

are observed.

8.4.2 Correlation Results for the Simply-Supported Case

The correlation matrix is presented graphically in the form of bars. As more mode

shapes are added to the result, more decreasing trend is observed. Figure 8.12 shows

these results.

From this graphic, many conclusions can be discussed.
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Figure 8.9. Third mode shape vector along with its graphical repre-
sentation. SS model.

1. An acceptable correlation is observed between mode shapes 1 and 2. This is

expected as first and second mode shapes are quite similar for all cases.

2. When comparing between the third mode shape vectors, a dramatic decrease

of correlation index is obtained. This is likely to yield a solid conclusion of

incorrect model.

3. The overall correlation index, which can be obtained by simply taking the last

value of the correlation vector as it shows the linear relationship of all the

stacked mode shapes is CI = 0.3952, which is rather low for concluding a

strong relationship.

4. The correlation vector is presented below:
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ψ4 =
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SS BEAM − 1ST AND 2ND MODESHAPES STACKED

Figure 8.10. Vector of two stacked mode shapes along with its graph-
ical representation. SS model.

CM =



0.9963

0.9534

0.0117

0.9738

0.3952


.
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Figure 8.11. Simply-supported vs. experimental mode shapes.

Figure 8.12. Correlation results. Simply-supported model.

8.4.3 Correlation to a Clamped-Clamped Beam

A similar approach to that of the previous section was applied, but using the model

of a clamped-clamped beam instead. The reader should recall that the purpose of

this algorithm is to look for the higest correlation between the experimental mode
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shape and the chosen mathematical ones. For brevity, the mode shape vectors are

not presented explicitly, instead, only the three first graphical representations of the

mode shapes are shown in Fig. 8.13.
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(b) 2nd Modeshape.
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(c) 3rd Modeshape.

Figure 8.13. Modeshapes of a clamped-clamped beam.

Although these look rather similar to those of the simply-supported case, the reader

should note a slight difference in the slope at the boundary conditions. Therefore, a

second check is to be performed, using the same experimental mode shape vectors.
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After performing the correlation check for a second time, the results are shown in

Fig. 8.14. The conclusions for this graphic are:
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Clamped−Clamped Experimental

Figure 8.14. Clamped-clamped vs. experimental mode shapes.
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Figure 8.15. Correlation results. Clamped-clamped model.

1. Again, high correlation values appear for mode shape vectors 1 and 2.
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2. An even lower correlation value than that of the simply-supported case is ob-

served in mode shape 3.

3. The overall correlation index, is CI = 0.4598, a small improvement from the

last case, but still too low for a conclusive judgment.

4. The correlation matrix is presented below:

CM =



0.9808

0.9794

0.0018

0.9763

0.4598


.

8.4.4 Correlation to a Beam with Rotational Masses at Both Ends

The third preliminary check is made with a beam with rotational masses at both

ends. It is assumed that the mathematical model matches with enough proximity

to the real inertia of the bridge’s ends. However, this is not going to be always the

case and that is expected. The method would have the capability to identify even a

difference like that. When a computational run of this algorithm is performed to an

unknown structure, it would have to be able to identify its physical parameters such

as inertial forces. A beam with rotational masses on both ends was depicted in Fig.

5.5. The three individual mode shapes are shown in Fig. 8.16.

When correlating these modes with those of the experimental model, the results of

Fig. 8.17 are obtained. For the case of the rotational mass model, a much more clear

coincidence is observed between the experimental and model curves. Nevertheless,

this does not mean that the chosen model is correct. This point has to remain very

clear for the reader. The proposed methodology only offers a procedure for choosing a
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Figure 8.16. First three mode shapes of a beam with asymmetrical
rotational masses.

model close enough so that the system’s behavior can be predicted with such model,

but it does not result in a model confirmation technique.

The observations of this third correlation check are summarized in the following

list:

1. This is the best result of all three correlation tests.
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Figure 8.17. Rotational mass vs. experimental mode shapes.
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Figure 8.18. Correlation results. Rotational mass model.

2. High correlation values appear in mode shapes 1 and 3. A slightly lower corre-

lation value appears in mode shape 2. This can be obesrved in Fig. 8.17 where

curves corresponding to the 2nd mode shape have a small deviation.

3. The overall correlation index, is CI = 0.8570, which is significantly higher than

the preceding cases. Notice that for a total confirmation of correlation, more

modes can be used in the study and no experimental model will have values

close to unity due to external factors and uncertainties.
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4. The correlation vector is presented below. However, should be noted that the

main difference is established by the high correlation of the third mode shape

in contrast to the two preceding cases where such value was close to zero.

CM =



0.9920

0.6389

0.9346

0.8267

0.8570


.

8.5 Correlation Algorithm to Determine Model Parameters

The previous three sections were devoted to explaining and demonstrating the vi-

sual and general characteristics of the proposed method. A broad model definition

was made based on such observations. However, as explained in Sec. 6.4, this is

a vague conclusion and does not offer the analyst a solid relationship between the

general model and the unknown boundary conditions. To overcome this problem a

similar procedure as the one developed in the cited section is done herein with the

only difference that instead of using a mode shape set generated with a simulation,

a real experimental mode shape set of unknown boundary conditions is considered.

Such mode shape set is shown in Fig. 8.6(d). A similar comparison to the eighteen

cases utilized in Sec. 6.4 is shown in Fig. 8.19. The solid red line corresponds to the

experimental mode shape obtained from hammer testing of the structure, the dashed

blue and green lines correspond to the spring-supported and rotational-inertia mod-

els, respectively. It is evident that closer correlations of the experimental mode shape

with the latter occur, whereas poor correlations with the former, especially in the

third mode shape is observed.

Similarly, as in Sec. 6.4, the second part of the analysis is to study the correlation

index for each inertia combination which was presented in the form of a bar plot. At
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Figure 8.19. Correlation comparison of nine parameter combinations.

this point it is necessary to point out that this technique is intended to facilitate the

model updating process but it requires that the analyst also apply good engineering

judgment. A certain amount of knowledge of the structure is required beforehand, for

instance the general type of boundaries at which the structure is subjected to (e.g.,

fixed, free, pinned or some combination of these); the general type of loading (e.g.,

concentrated load, distributed or profiled loading, or some combination of these); and

the type of service the structure is intended for (e.g., heavy or light traffic, pedestrian

traffic, or some combination of these). A good check of the validity of the chosen
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parameters is to compare the natural frequencies with those of the chosen model. If

such frequencies are comparable within a range between 10% and 20% (for at least

the three first natural frequencies), it could be said that reasonable close model for

an unknown system.

The bar plot of the correlation indexes for both rotational inertia and spring-

supported model cases are shown in Fig. 8.20. The final results are:

• Simply supported structure with rotational masses on both ends.

• Parameter values are: I1 = 52.712 Nm2/rad, and I2 = 52.712 Nm2/rad which

produce a correlation index of 0.937.

• The first five natural frequencies compared to those corresponding to the model

are listed in Table 8.2

Table 8.2. Final frequency comparison (in Hertz).

Analytical FEM Exp.

5.7071 5.8918 3.6328

13.3434 14.4385 13.8516

22.1749 25.8347 27.8750

49.8844 50.6847 47.8203

93.2855 93.6796 94.2180

8.6 Discussion

Even though choosing the boundary condition combination case with the highest

correlation may prove to be enough for selecting a model, this conclusion may not be

final as other parameter combinations may present a high correlation value. Consider
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(b) Simply Supported with rotational masses

Figure 8.20. MAC-based correlation results.

for example a case in which two correlation indexes are very close in value. Which

one is correct and could a threshold be defined to evaluate this quantitatively? This

constitutes an important design question. Certainly one could choose to use more

mode shape vectors. Indeed, when using only the first mode shape vector, almost all

the indexes are approximately equal to one. When the second mode shape is added,

some indexes reduce considerably but still several are close to one. If the third mode

shape is added, a bar plot similar to Fig. 8.20 can be observed. In this case, the

yellow and maroon bars are pretty close. By adding a fourth mode shape vector, it is
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expected that the leading trend of a parameter combination is maintained, confirming

such as the best match.

Low correlation values as those depicted in Fig. 8.20(a) are a clear indication of

insufficient model space size. A poor correlation index average value is signal of the

wrong model selection. Moreover, if by adding more mode shape vectors the trend

does not change, a different model must be selected and added to the correlation

algorithm.

An alternative to the previously mentioned problem is the fact that each modal

contribution’s weight is different in the total response of the system. Indeed, the first

mode has a bigger contribution than the second mode, which has a bigger contribution

than the third mode, and so on. From this standpoint, one could think about applying

a weighting function to each mode so that the stacked mode shape vector varies by

sections instead of in an overall way. This approach could represent a much more

accurate correlation algorithm.

Another good alternative is to modify the resolution of the experiment in such

a way that a variable resolution is obtained. In sections of the structure where the

mode shape behavior is fully understood and predicted, fewer sensors can be installed

in exchange of zones of the structure in which more understanding of the behavior is

needed. This technique could be linked to the weighting approach described above in

the sense that a higher number of sensors can be used when trying to identify higher

modes.

8.7 Implementation of the Methodology

The correlation technique developed in this thesis is an intermediate step between

experimental data and updated model. For full implementation of the method in a

real structure, a diagram with all the suggested steps is presented in Fig. 8.21, this

diagram is a summary of what an analyst must do to implement this technique in

any structure.
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Figure 8.21. Correlation method. Implementation
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9. CONCLUSIONS

A novel methodology for establishing an accurate model for predicting the behavior

of the vibrations in a beam has been developed, in which a linear correlation equa-

tion is applied to compare the degree of linearity between an experimentally obtained

mode shape vector and a group of suitable analytical mode shape vectors extracted

from selected model candidates (model space). The procedure is performed iteratively

comparing one by one until the highest correlation index is achieved.

After performing the proposed methodology, if deviations are still present in the

model, classical model updating techniques can be further applied to tweak the re-

sponse to a most accurate state. However, the correlation technique should be enough.

Finding natural-frequency correlations may not yield the most accurate model as

mode shape correlations. However, a good extra check for the analyst is to compare

mode shapes in a first step; and natural frequencies in a second step to approximate

the model as much as possible to the real structure.

Almost all the classical models along with the non-classical combination cases

studied give a high correlation for the first mode shape and fairly high values for the

second mode shape. When analyzing from the third mode shape onwards, is when

correlation study can be clearly distinguished. Therefore, a good result is obtained

when constructing a vector of at least the three first mode shapes stacked together.

Correlation cannot be studied when comparing individual mode shapes as many of

these are similar from one model to another.
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An updated model in which the manipulable parameters are those corresponding

to the boundary conditions instead of structural or material parameters, is a much

more realistic model to work with. The main source of model discrepancies should be

looked for in the most unknown aspect of a structural system which precisely are its

boundary conditions. This also holds for model variations over lifespan, as boundary

conditions are the most likely aspect of a system to change due to use and wear.

The proposed methodology can be used as a supplementary or complementary

technique. The former, for cases where computational costs and time requirements

are not a big issue; and the latter, where high accuracy of the updated model is

required. Nevertheless, once a model has been narrowed enough with the correlation

method, computational costs can drop significantly if compared to applying the tra-

ditional model updating techniques for the whole process.

Model spaces can be constructed either from analytical equations, or finite element

models; the method does not require a closed-form solution of any model equation,

but only a mode shape vector, which makes the methodology much more user-friendly

and straightforward.

Deviations of the observed natural frequencies from those of the predicted by the

updated model are expected for higher modes. Indeed, Table 8.2 shows good concor-

dance for the first three modes and an increasing deviation for higher modes due to

noise implications and system uncertainties.

The most visible uncertainty of the experiment was welding torsion which was

not included in the model. Probably this is the reason of some of the deviations

described above. This particular uncertainty is likely to be the cause of having the

same rotational inertia value in both sides when these values are not symmetric in

reality.
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10. RECOMMENDATIONS AND FUTURE DIRECTIONS

1. Many features could be enhanced for future testing. One of the main issues

encountered is the torsion of the beam-sections due to welding. It is well known

that any welding process will inflict residual stresses due to excessive heat pro-

duced. It is recommended a close monitoring of the manufacturing procedure

to minimize such a problem. An industrial procedure known as matrix man-

ufacturing may be used where a pattern is set up beforehand to constrain the

elements that are going to be welded so the stresses won’t twist them in the

process.

2. For experiments with a large amount of accelerometers (> 5), it is highly rec-

ommended the use of wire identifiers. The task of identifying cables among

many similar-looking ones can be very time consuming.

3. If finite element modeling is selected as the source of the elements of the model

space, careful attention must be paid to filter computational modes.

4. It is not necessary to have a big amount of elements in the model space. The

experimental comparison of Ch. 8 was made with six cases for one of the bound-

ary conditions, and fractions of 1, 0.6, 0.4, 0.2 and 0.1 of that value for the other

boundary condition. This set of combinations yielded 36 elements in the model

space. It is recommended to start looking for the extreme cases (2 elements),

and then include a couple in between. Once the model has been narrowed, more

elements can be added as needed.

5. A logic future direction of this research project is to explore simple structures

different than a beam; say, a one or two story structure.
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6. The present thesis used only mode shape vectors as the comparison elements.

Natural frequencies were not included in the analysis but only as posterior check

points. It is recommended to include natural frequencies as a weighting element

in the methodology for further accuracy of the method.

7. The structure used in this project has the capability of replicating many types

of boundary conditions. Though, only a simply-supported configuration with

rotational masses at both ends was used. Another logic future step is to explore

different boundary conditions in the same structure and to apply the method-

ology in these.

8. Another possible approach for dealing with the problem of more than one high

correlation index would be to explore the possibility of applying a weighting

factor to each mode, proportional to the contribution of such mode to the total

response of the structure.
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nische Hochschule Zürich, 2013.
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